针对 Nemytski 型 SPDE 的阶次高达 1.5 的指数随机 Runge-Kutta 类型方法

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED IMA Journal of Numerical Analysis Pub Date : 2024-10-17 DOI:10.1093/imanum/drae064
Claudine von Hallern, Ricarda Missfeldt, Andreas Rössler
{"title":"针对 Nemytski 型 SPDE 的阶次高达 1.5 的指数随机 Runge-Kutta 类型方法","authors":"Claudine von Hallern, Ricarda Missfeldt, Andreas Rössler","doi":"10.1093/imanum/drae064","DOIUrl":null,"url":null,"abstract":"For the approximation of solutions for stochastic partial differential equations, numerical methods that obtain a high order of convergence and at the same time involve reasonable computational cost are of particular interest. We therefore propose a new numerical method of exponential stochastic Runge–Kutta type that allows for convergence with a temporal order of up to $\\frac{3}/{2}$ and that can be combined with several spatial discretizations. The developed family of derivative-free schemes is tailored to stochastic partial differential equations of Nemytskii-type, i.e., with pointwise multiplicative noise operators. We prove the strong convergence of these schemes in the root mean-square sense and present some numerical examples that reveal the theoretical results.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An exponential stochastic Runge–Kutta type method of order up to 1.5 for SPDEs of Nemytskii-type\",\"authors\":\"Claudine von Hallern, Ricarda Missfeldt, Andreas Rössler\",\"doi\":\"10.1093/imanum/drae064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the approximation of solutions for stochastic partial differential equations, numerical methods that obtain a high order of convergence and at the same time involve reasonable computational cost are of particular interest. We therefore propose a new numerical method of exponential stochastic Runge–Kutta type that allows for convergence with a temporal order of up to $\\\\frac{3}/{2}$ and that can be combined with several spatial discretizations. The developed family of derivative-free schemes is tailored to stochastic partial differential equations of Nemytskii-type, i.e., with pointwise multiplicative noise operators. We prove the strong convergence of these schemes in the root mean-square sense and present some numerical examples that reveal the theoretical results.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drae064\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae064","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

对于随机偏微分方程解的近似,既能获得高阶收敛,同时又有合理计算成本的数值方法尤为重要。因此,我们提出了一种指数随机 Runge-Kutta 类型的新数值方法,该方法的时间阶收敛可达 $\frac{3}/{2}$,并可与多种空间离散方法相结合。所开发的无导数方案系列适用于 Nemytski 型随机偏微分方程,即具有点乘噪声算子的随机偏微分方程。我们证明了这些方案在均方根意义上的强收敛性,并给出了一些揭示理论结果的数值示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An exponential stochastic Runge–Kutta type method of order up to 1.5 for SPDEs of Nemytskii-type
For the approximation of solutions for stochastic partial differential equations, numerical methods that obtain a high order of convergence and at the same time involve reasonable computational cost are of particular interest. We therefore propose a new numerical method of exponential stochastic Runge–Kutta type that allows for convergence with a temporal order of up to $\frac{3}/{2}$ and that can be combined with several spatial discretizations. The developed family of derivative-free schemes is tailored to stochastic partial differential equations of Nemytskii-type, i.e., with pointwise multiplicative noise operators. We prove the strong convergence of these schemes in the root mean-square sense and present some numerical examples that reveal the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
期刊最新文献
Stability estimates of Nyström discretizations of Helmholtz decomposition boundary integral equation formulations for the solution of Navier scattering problems in two dimensions with Dirichlet boundary conditions Positive definite functions on a regular domain An extension of the approximate component mode synthesis method to the heterogeneous Helmholtz equation Time-dependent electromagnetic scattering from dispersive materials An exponential stochastic Runge–Kutta type method of order up to 1.5 for SPDEs of Nemytskii-type
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1