Jung Seung Nam, Maya S. Dixon, Iok In Christine Chio
{"title":"硫化氢癌细胞生存的一缕曙光","authors":"Jung Seung Nam, Maya S. Dixon, Iok In Christine Chio","doi":"10.1016/j.molcel.2024.09.027","DOIUrl":null,"url":null,"abstract":"Hydrogen sulfide (H<sub>2</sub>S) can regulate biological processes by post-translational persulfidation of proteins at select cysteine residues. In this issue of <em>Molecular Cell</em>, Zheng et al.<span><span><sup>1</sup></span></span> identify the enzyme SAHH as an H<sub>2</sub>S substrate, which upon persulfidation disrupts homocysteine metabolism and sensitizes lung cancer cells to ferroptosis.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"35 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen sulfide: A whiff of trouble for cancer cell survival\",\"authors\":\"Jung Seung Nam, Maya S. Dixon, Iok In Christine Chio\",\"doi\":\"10.1016/j.molcel.2024.09.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrogen sulfide (H<sub>2</sub>S) can regulate biological processes by post-translational persulfidation of proteins at select cysteine residues. In this issue of <em>Molecular Cell</em>, Zheng et al.<span><span><sup>1</sup></span></span> identify the enzyme SAHH as an H<sub>2</sub>S substrate, which upon persulfidation disrupts homocysteine metabolism and sensitizes lung cancer cells to ferroptosis.\",\"PeriodicalId\":18950,\"journal\":{\"name\":\"Molecular Cell\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molcel.2024.09.027\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2024.09.027","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Hydrogen sulfide: A whiff of trouble for cancer cell survival
Hydrogen sulfide (H2S) can regulate biological processes by post-translational persulfidation of proteins at select cysteine residues. In this issue of Molecular Cell, Zheng et al.1 identify the enzyme SAHH as an H2S substrate, which upon persulfidation disrupts homocysteine metabolism and sensitizes lung cancer cells to ferroptosis.
期刊介绍:
Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.