GeQuPI:利用多目标遗传编程改进量子程序

IF 3.7 2区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING Journal of Systems and Software Pub Date : 2024-10-05 DOI:10.1016/j.jss.2024.112223
{"title":"GeQuPI:利用多目标遗传编程改进量子程序","authors":"","doi":"10.1016/j.jss.2024.112223","DOIUrl":null,"url":null,"abstract":"<div><div>Processing quantum information poses novel challenges regarding the debugging of faulty quantum programs. Notably, the lack of accessible information on intermediate states during quantum processing, renders traditional debugging techniques infeasible. Moreover, even correct quantum programs might not be processable, as current quantum computers are limited in computation capacity. Thus, quantum program developers have to consider trade-offs between accuracy (i.e., probabilistically correct functionality) and computational cost of the proposed solutions. Manually finding sufficiently accurate and efficient solutions is a challenging task, even for quantum computing experts. To tackle these challenges, we propose a quantum program improvement framework for an automated generation of accurate and efficient solutions, coined Genetic Quantum Program Improver (<span>GeQuPI</span>). In particular, we focus on the tasks of debugging and optimization of quantum programs. Our framework uses techniques from quantum information theory and applies multi-objective genetic programming, which can be further hybridized with quantum-aware optimizers. To demonstrate the benefits of <span>GeQuPI</span>, it is applied to 47 quantum programs reused from literature and openly published libraries. The results show that our approach is capable of correcting faulty programs and optimize inefficient ones for the majority of the studied cases, showing average optimizations of 35% with respect to computational cost.</div></div>","PeriodicalId":51099,"journal":{"name":"Journal of Systems and Software","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GeQuPI: Quantum Program Improvement with Multi-Objective Genetic Programming\",\"authors\":\"\",\"doi\":\"10.1016/j.jss.2024.112223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Processing quantum information poses novel challenges regarding the debugging of faulty quantum programs. Notably, the lack of accessible information on intermediate states during quantum processing, renders traditional debugging techniques infeasible. Moreover, even correct quantum programs might not be processable, as current quantum computers are limited in computation capacity. Thus, quantum program developers have to consider trade-offs between accuracy (i.e., probabilistically correct functionality) and computational cost of the proposed solutions. Manually finding sufficiently accurate and efficient solutions is a challenging task, even for quantum computing experts. To tackle these challenges, we propose a quantum program improvement framework for an automated generation of accurate and efficient solutions, coined Genetic Quantum Program Improver (<span>GeQuPI</span>). In particular, we focus on the tasks of debugging and optimization of quantum programs. Our framework uses techniques from quantum information theory and applies multi-objective genetic programming, which can be further hybridized with quantum-aware optimizers. To demonstrate the benefits of <span>GeQuPI</span>, it is applied to 47 quantum programs reused from literature and openly published libraries. The results show that our approach is capable of correcting faulty programs and optimize inefficient ones for the majority of the studied cases, showing average optimizations of 35% with respect to computational cost.</div></div>\",\"PeriodicalId\":51099,\"journal\":{\"name\":\"Journal of Systems and Software\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems and Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016412122400267X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems and Software","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016412122400267X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

处理量子信息给调试有问题的量子程序带来了新的挑战。值得注意的是,由于缺乏量子处理过程中的中间状态信息,传统的调试技术变得不可行。此外,由于当前量子计算机的计算能力有限,即使是正确的量子程序也可能无法处理。因此,量子程序开发人员必须考虑所提方案的准确性(即概率上正确的功能)和计算成本之间的权衡。即使对于量子计算专家来说,手动寻找足够准确和高效的解决方案也是一项具有挑战性的任务。为了应对这些挑战,我们提出了一个量子程序改进框架,用于自动生成准确高效的解决方案,并将其命名为遗传量子程序改进器(GeQuPI)。我们尤其关注量子程序的调试和优化任务。我们的框架使用了量子信息论的技术,并应用了多目标遗传编程,还可以进一步与量子感知优化器进行混合。为了证明 GeQuPI 的优势,我们将其应用于 47 个从文献和公开发布的程序库中重用的量子程序。结果表明,我们的方法能够纠正错误程序,并优化大多数研究案例中的低效程序,在计算成本方面平均优化了 35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GeQuPI: Quantum Program Improvement with Multi-Objective Genetic Programming
Processing quantum information poses novel challenges regarding the debugging of faulty quantum programs. Notably, the lack of accessible information on intermediate states during quantum processing, renders traditional debugging techniques infeasible. Moreover, even correct quantum programs might not be processable, as current quantum computers are limited in computation capacity. Thus, quantum program developers have to consider trade-offs between accuracy (i.e., probabilistically correct functionality) and computational cost of the proposed solutions. Manually finding sufficiently accurate and efficient solutions is a challenging task, even for quantum computing experts. To tackle these challenges, we propose a quantum program improvement framework for an automated generation of accurate and efficient solutions, coined Genetic Quantum Program Improver (GeQuPI). In particular, we focus on the tasks of debugging and optimization of quantum programs. Our framework uses techniques from quantum information theory and applies multi-objective genetic programming, which can be further hybridized with quantum-aware optimizers. To demonstrate the benefits of GeQuPI, it is applied to 47 quantum programs reused from literature and openly published libraries. The results show that our approach is capable of correcting faulty programs and optimize inefficient ones for the majority of the studied cases, showing average optimizations of 35% with respect to computational cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Systems and Software
Journal of Systems and Software 工程技术-计算机:理论方法
CiteScore
8.60
自引率
5.70%
发文量
193
审稿时长
16 weeks
期刊介绍: The Journal of Systems and Software publishes papers covering all aspects of software engineering and related hardware-software-systems issues. All articles should include a validation of the idea presented, e.g. through case studies, experiments, or systematic comparisons with other approaches already in practice. Topics of interest include, but are not limited to: • Methods and tools for, and empirical studies on, software requirements, design, architecture, verification and validation, maintenance and evolution • Agile, model-driven, service-oriented, open source and global software development • Approaches for mobile, multiprocessing, real-time, distributed, cloud-based, dependable and virtualized systems • Human factors and management concerns of software development • Data management and big data issues of software systems • Metrics and evaluation, data mining of software development resources • Business and economic aspects of software development processes The journal welcomes state-of-the-art surveys and reports of practical experience for all of these topics.
期刊最新文献
FSECAM: A contextual thematic approach for linking feature to multi-level software architectural components Exploring emergent microservice evolution in elastic deployment environments An empirical study of AI techniques in mobile applications Information needs in bug reports for web applications Development and benchmarking of multilingual code clone detector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1