Zequan Chen , Jianping Li , Qusheng Li , Zhen Dong , Bisheng Yang
{"title":"DeepAAT:深度自动航空三角测量法,用于基于无人机的快速制图","authors":"Zequan Chen , Jianping Li , Qusheng Li , Zhen Dong , Bisheng Yang","doi":"10.1016/j.jag.2024.104190","DOIUrl":null,"url":null,"abstract":"<div><div>Automated Aerial Triangulation (AAT), aiming to restore image poses and reconstruct sparse points simultaneously, plays a pivotal role in earth observation. AAT has evolved into a fundamental process widely applied in large-scale Unmanned Aerial Vehicle (UAV) based mapping. However classic AAT methods still face challenges like low efficiency and limited robustness. This paper introduces DeepAAT, a deep learning network designed specifically for AAT of UAV imagery. DeepAAT considers both spatial and spectral characteristics of imagery, enhancing its capability to resolve erroneous matching pairs and accurately predict image poses. DeepAAT marks a significant leap in AAT’s efficiency, ensuring thorough scene coverage and precision. Its processing speed outpaces incremental AAT methods by hundreds of times and global AAT methods by tens of times while maintaining a comparable level of reconstruction accuracy. Additionally, DeepAAT’s scene clustering and merging strategy facilitate rapid localization and pose determination for large-scale UAV images, even under constrained computing resources. The experimental results demonstrate that DeepAAT substantially improves over conventional AAT methods, highlighting its potential for increased efficiency and accuracy in UAV-based 3D reconstruction tasks. To benefit the photogrammetry society, the code of DeepAAT will be released at: <span><span>https://github.com/WHU-USI3DV/DeepAAT</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"134 ","pages":"Article 104190"},"PeriodicalIF":7.6000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DeepAAT: Deep Automated Aerial Triangulation for Fast UAV-based mapping\",\"authors\":\"Zequan Chen , Jianping Li , Qusheng Li , Zhen Dong , Bisheng Yang\",\"doi\":\"10.1016/j.jag.2024.104190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Automated Aerial Triangulation (AAT), aiming to restore image poses and reconstruct sparse points simultaneously, plays a pivotal role in earth observation. AAT has evolved into a fundamental process widely applied in large-scale Unmanned Aerial Vehicle (UAV) based mapping. However classic AAT methods still face challenges like low efficiency and limited robustness. This paper introduces DeepAAT, a deep learning network designed specifically for AAT of UAV imagery. DeepAAT considers both spatial and spectral characteristics of imagery, enhancing its capability to resolve erroneous matching pairs and accurately predict image poses. DeepAAT marks a significant leap in AAT’s efficiency, ensuring thorough scene coverage and precision. Its processing speed outpaces incremental AAT methods by hundreds of times and global AAT methods by tens of times while maintaining a comparable level of reconstruction accuracy. Additionally, DeepAAT’s scene clustering and merging strategy facilitate rapid localization and pose determination for large-scale UAV images, even under constrained computing resources. The experimental results demonstrate that DeepAAT substantially improves over conventional AAT methods, highlighting its potential for increased efficiency and accuracy in UAV-based 3D reconstruction tasks. To benefit the photogrammetry society, the code of DeepAAT will be released at: <span><span>https://github.com/WHU-USI3DV/DeepAAT</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":\"134 \",\"pages\":\"Article 104190\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569843224005466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224005466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
DeepAAT: Deep Automated Aerial Triangulation for Fast UAV-based mapping
Automated Aerial Triangulation (AAT), aiming to restore image poses and reconstruct sparse points simultaneously, plays a pivotal role in earth observation. AAT has evolved into a fundamental process widely applied in large-scale Unmanned Aerial Vehicle (UAV) based mapping. However classic AAT methods still face challenges like low efficiency and limited robustness. This paper introduces DeepAAT, a deep learning network designed specifically for AAT of UAV imagery. DeepAAT considers both spatial and spectral characteristics of imagery, enhancing its capability to resolve erroneous matching pairs and accurately predict image poses. DeepAAT marks a significant leap in AAT’s efficiency, ensuring thorough scene coverage and precision. Its processing speed outpaces incremental AAT methods by hundreds of times and global AAT methods by tens of times while maintaining a comparable level of reconstruction accuracy. Additionally, DeepAAT’s scene clustering and merging strategy facilitate rapid localization and pose determination for large-scale UAV images, even under constrained computing resources. The experimental results demonstrate that DeepAAT substantially improves over conventional AAT methods, highlighting its potential for increased efficiency and accuracy in UAV-based 3D reconstruction tasks. To benefit the photogrammetry society, the code of DeepAAT will be released at: https://github.com/WHU-USI3DV/DeepAAT.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.