利用卫星时间序列进行连续土地覆被变化监测和语义分割的快速混合方法

Wenpeng Zhao , Rongfang Lyu , Jinming Zhang , Jili Pang , Jianming Zhang
{"title":"利用卫星时间序列进行连续土地覆被变化监测和语义分割的快速混合方法","authors":"Wenpeng Zhao ,&nbsp;Rongfang Lyu ,&nbsp;Jinming Zhang ,&nbsp;Jili Pang ,&nbsp;Jianming Zhang","doi":"10.1016/j.jag.2024.104222","DOIUrl":null,"url":null,"abstract":"<div><div>Land cover change detection and classification, including both inter-class changes (land cover conversion, LCC) and intra-class changes (land cover modification, LCM), is critical for understanding the Earth’s dynamic processes and promoting sustainability. However, previous studies have predominantly focused on LCC, with less emphasis on LCM. Land cover classification remains challenging, and its mapping results are often affected by salt and pepper noise. Here, we propose a hybrid approach for continuous change detection and classification of LCC and LCM using Jinchang City, China, as a case study. Firstly, we combined the Continuous Change Detection and Classification (CCDC) and the Bayesian Estimator of Abrupt change, Seasonal change, and Trend (BEAST) algorithms to identify LCC and LCM using all available Landsat time series (TS) data from 2000 to 2020. Then, the harmonic regression coefficients and RMSE values derived from CCDC (hereafter called CCDC features) were fed into the DCNN model for LCC classification. Our findings indicate: (1) For LCC and LCM accuracy assessment, the CCDC and BEAST ensemble achieved a spatial F1 score of 82.7% and an average temporal F1 score of 79.7%. (2) In LCC classification, the DCNN model with CCDC features, particularly DeepLabV3+, outperformed the pixel-based XGBoost and other multi-year land cover products, with frequency-weighted intersection over union (FWIoU), overall accuracy, and Kappa scores of 88.7%, 94%, and 0.87, respectively. (3) Seasonal LCM showed a more concentrated distribution than trend LCM. (4) In Jinchang City, LCM larger than LCC in area, and grassland and cultivated land are the most distributed. Our approach can be contributed to wall-to-wall land surface monitoring and enhance land management capabilities.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"134 ","pages":"Article 104222"},"PeriodicalIF":7.6000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fast hybrid approach for continuous land cover change monitoring and semantic segmentation using satellite time series\",\"authors\":\"Wenpeng Zhao ,&nbsp;Rongfang Lyu ,&nbsp;Jinming Zhang ,&nbsp;Jili Pang ,&nbsp;Jianming Zhang\",\"doi\":\"10.1016/j.jag.2024.104222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Land cover change detection and classification, including both inter-class changes (land cover conversion, LCC) and intra-class changes (land cover modification, LCM), is critical for understanding the Earth’s dynamic processes and promoting sustainability. However, previous studies have predominantly focused on LCC, with less emphasis on LCM. Land cover classification remains challenging, and its mapping results are often affected by salt and pepper noise. Here, we propose a hybrid approach for continuous change detection and classification of LCC and LCM using Jinchang City, China, as a case study. Firstly, we combined the Continuous Change Detection and Classification (CCDC) and the Bayesian Estimator of Abrupt change, Seasonal change, and Trend (BEAST) algorithms to identify LCC and LCM using all available Landsat time series (TS) data from 2000 to 2020. Then, the harmonic regression coefficients and RMSE values derived from CCDC (hereafter called CCDC features) were fed into the DCNN model for LCC classification. Our findings indicate: (1) For LCC and LCM accuracy assessment, the CCDC and BEAST ensemble achieved a spatial F1 score of 82.7% and an average temporal F1 score of 79.7%. (2) In LCC classification, the DCNN model with CCDC features, particularly DeepLabV3+, outperformed the pixel-based XGBoost and other multi-year land cover products, with frequency-weighted intersection over union (FWIoU), overall accuracy, and Kappa scores of 88.7%, 94%, and 0.87, respectively. (3) Seasonal LCM showed a more concentrated distribution than trend LCM. (4) In Jinchang City, LCM larger than LCC in area, and grassland and cultivated land are the most distributed. Our approach can be contributed to wall-to-wall land surface monitoring and enhance land management capabilities.</div></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":\"134 \",\"pages\":\"Article 104222\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569843224005788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224005788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

土地覆被变化检测和分类,包括类间变化(土地覆被转换,LCC)和类内变化(土地覆被改良,LCM),对于了解地球的动态过程和促进可持续性至关重要。然而,以往的研究主要侧重于土地覆被转换,而较少关注土地覆被改良。土地覆被分类仍然具有挑战性,其绘图结果经常受到椒盐噪声的影响。在此,我们以中国金昌市为例,提出了一种土地覆被连续变化检测和分类的混合方法。首先,我们将连续变化检测和分类(CCDC)算法与突变、季节变化和趋势贝叶斯估计(BEAST)算法相结合,利用 2000 年至 2020 年的所有可用陆地卫星时间序列(TS)数据来识别 LCC 和 LCM。然后,将 CCDC 得出的谐波回归系数和均方根误差值(以下称为 CCDC 特征)输入 DCNN 模型,用于 LCC 分类。我们的研究结果表明:(1)在 LCC 和 LCM 准确度评估中,CCDC 和 BEAST 组合的空间 F1 得分为 82.7%,平均时间 F1 得分为 79.7%。(2)在土地覆被分类中,具有 CCDC 特征的 DCNN 模型,特别是 DeepLabV3+ 的表现优于基于像素的 XGBoost 和其他多年期土地覆被产品,其频率加权交集大于联合(FWIoU)、总体准确率和 Kappa 分数分别为 88.7%、94% 和 0.87。(3) 与趋势 LCM 相比,季节 LCM 的分布更为集中。(4) 在金昌市,LCM 的面积大于 LCC,草地和耕地分布最广。我们的方法可用于地表监测,提高土地管理能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fast hybrid approach for continuous land cover change monitoring and semantic segmentation using satellite time series
Land cover change detection and classification, including both inter-class changes (land cover conversion, LCC) and intra-class changes (land cover modification, LCM), is critical for understanding the Earth’s dynamic processes and promoting sustainability. However, previous studies have predominantly focused on LCC, with less emphasis on LCM. Land cover classification remains challenging, and its mapping results are often affected by salt and pepper noise. Here, we propose a hybrid approach for continuous change detection and classification of LCC and LCM using Jinchang City, China, as a case study. Firstly, we combined the Continuous Change Detection and Classification (CCDC) and the Bayesian Estimator of Abrupt change, Seasonal change, and Trend (BEAST) algorithms to identify LCC and LCM using all available Landsat time series (TS) data from 2000 to 2020. Then, the harmonic regression coefficients and RMSE values derived from CCDC (hereafter called CCDC features) were fed into the DCNN model for LCC classification. Our findings indicate: (1) For LCC and LCM accuracy assessment, the CCDC and BEAST ensemble achieved a spatial F1 score of 82.7% and an average temporal F1 score of 79.7%. (2) In LCC classification, the DCNN model with CCDC features, particularly DeepLabV3+, outperformed the pixel-based XGBoost and other multi-year land cover products, with frequency-weighted intersection over union (FWIoU), overall accuracy, and Kappa scores of 88.7%, 94%, and 0.87, respectively. (3) Seasonal LCM showed a more concentrated distribution than trend LCM. (4) In Jinchang City, LCM larger than LCC in area, and grassland and cultivated land are the most distributed. Our approach can be contributed to wall-to-wall land surface monitoring and enhance land management capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
期刊最新文献
Combining readily available population and land cover maps to generate non-residential built-up labels to train Sentinel-2 image segmentation models An intercomparison of national and global land use and land cover products for Fiji The illusion of success: Test set disproportion causes inflated accuracy in remote sensing mapping research Multispectral imaging and terrestrial laser scanning for the detection of drought-induced paraheliotropic leaf movement in soybean DeLA: An extremely faster network with decoupled local aggregation for large scale point cloud learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1