{"title":"FAM:针对核磁共振成像数据的自适应联合元学习","authors":"Indrajeet Kumar Sinha, Shekhar Verma, Krishna Pratap Singh","doi":"10.1016/j.patrec.2024.09.018","DOIUrl":null,"url":null,"abstract":"<div><div>Federated learning enables multiple clients to collaborate to train a model without sharing data. Clients with insufficient data or data diversity participate in federated learning to learn a model with superior performance. MRI data suffers from inadequate data and different data distribution due to differences in MRI scanners and client characteristics. Also, privacy concerns preclude data sharing. In this work, we propose a novel adaptive federated meta-learning (FAM) mechanism for collaboratively learning a single global model, which is personalized locally on individual clients. The learnt sparse global model captures the common features in the MRI data across clients. This model is grown on each client to learn a personalized model by capturing additional client-specific parameters from local data. Experimental results on multiple data sets show that the personalization process at each client quickly converges using a limited number of epochs. The personalized client models outperformed the locally trained models, demonstrating the efficacy of the FAM mechanism. Additionally, the FAM-based sparse global model has fewer parameters that require less communication overhead during federated learning. This makes the model viable for networks with limited resources.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"186 ","pages":"Pages 205-212"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FAM: Adaptive federated meta-learning for MRI data\",\"authors\":\"Indrajeet Kumar Sinha, Shekhar Verma, Krishna Pratap Singh\",\"doi\":\"10.1016/j.patrec.2024.09.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Federated learning enables multiple clients to collaborate to train a model without sharing data. Clients with insufficient data or data diversity participate in federated learning to learn a model with superior performance. MRI data suffers from inadequate data and different data distribution due to differences in MRI scanners and client characteristics. Also, privacy concerns preclude data sharing. In this work, we propose a novel adaptive federated meta-learning (FAM) mechanism for collaboratively learning a single global model, which is personalized locally on individual clients. The learnt sparse global model captures the common features in the MRI data across clients. This model is grown on each client to learn a personalized model by capturing additional client-specific parameters from local data. Experimental results on multiple data sets show that the personalization process at each client quickly converges using a limited number of epochs. The personalized client models outperformed the locally trained models, demonstrating the efficacy of the FAM mechanism. Additionally, the FAM-based sparse global model has fewer parameters that require less communication overhead during federated learning. This makes the model viable for networks with limited resources.</div></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"186 \",\"pages\":\"Pages 205-212\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167865524002848\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524002848","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
FAM: Adaptive federated meta-learning for MRI data
Federated learning enables multiple clients to collaborate to train a model without sharing data. Clients with insufficient data or data diversity participate in federated learning to learn a model with superior performance. MRI data suffers from inadequate data and different data distribution due to differences in MRI scanners and client characteristics. Also, privacy concerns preclude data sharing. In this work, we propose a novel adaptive federated meta-learning (FAM) mechanism for collaboratively learning a single global model, which is personalized locally on individual clients. The learnt sparse global model captures the common features in the MRI data across clients. This model is grown on each client to learn a personalized model by capturing additional client-specific parameters from local data. Experimental results on multiple data sets show that the personalization process at each client quickly converges using a limited number of epochs. The personalized client models outperformed the locally trained models, demonstrating the efficacy of the FAM mechanism. Additionally, the FAM-based sparse global model has fewer parameters that require less communication overhead during federated learning. This makes the model viable for networks with limited resources.
期刊介绍:
Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition.
Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.