{"title":"CAF 分泌的 LOX 通过组蛋白乳酸化促进 PD-L1 的表达,并通过 TGFβ/IGF1 信号调节胃癌中肿瘤的 EMT","authors":"","doi":"10.1016/j.cellsig.2024.111462","DOIUrl":null,"url":null,"abstract":"<div><div>In gastric cancer treatment, cancer-associated fibroblasts (CAF) may significantly influence the efficacy of immune checkpoint inhibitors by modulating PD-L1 expression. However, the precise mechanisms remain unclear. This study aims to explore the relationship between CAF and PD-L1 expression, providing new insights for improving PD-L1-targeted therapies.</div><div>Using primary fibroblasts, transcriptome sequencing, ChIP-qPCR, and a lung metastasis model, we discovered that CAF secrete lysyl oxidase (LOX), which activates the TGFβ signaling pathway in gastric cancer cells, thereby promoting insulin-like growth factor 1(IGF1) expression. Upregulation of IGF1 enhances gastric cancer cell migration, epithelial-mesenchymal transition (EMT), and glycolysis. Additionally, we found that lactate accumulation leads to lysine 18 lactylation on histone H3 (H3K18la), which enriches at the PD-L1 promoter region, thus promoting PD-L1 transcription. These findings suggest that CAF may diminish the effectiveness of PD-1/PD-L1 blockade immunotherapy through LOX-induced glycolysis and lactate accumulation. Consequently, we have constructed a model of the interactions among CAF, lactate, and PD-L1 in gastric cancer progression, providing new experimental evidence for PD-L1-based immunotherapy.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CAF-secreted LOX promotes PD-L1 expression via histone Lactylation and regulates tumor EMT through TGFβ/IGF1 signaling in gastric Cancer\",\"authors\":\"\",\"doi\":\"10.1016/j.cellsig.2024.111462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In gastric cancer treatment, cancer-associated fibroblasts (CAF) may significantly influence the efficacy of immune checkpoint inhibitors by modulating PD-L1 expression. However, the precise mechanisms remain unclear. This study aims to explore the relationship between CAF and PD-L1 expression, providing new insights for improving PD-L1-targeted therapies.</div><div>Using primary fibroblasts, transcriptome sequencing, ChIP-qPCR, and a lung metastasis model, we discovered that CAF secrete lysyl oxidase (LOX), which activates the TGFβ signaling pathway in gastric cancer cells, thereby promoting insulin-like growth factor 1(IGF1) expression. Upregulation of IGF1 enhances gastric cancer cell migration, epithelial-mesenchymal transition (EMT), and glycolysis. Additionally, we found that lactate accumulation leads to lysine 18 lactylation on histone H3 (H3K18la), which enriches at the PD-L1 promoter region, thus promoting PD-L1 transcription. These findings suggest that CAF may diminish the effectiveness of PD-1/PD-L1 blockade immunotherapy through LOX-induced glycolysis and lactate accumulation. Consequently, we have constructed a model of the interactions among CAF, lactate, and PD-L1 in gastric cancer progression, providing new experimental evidence for PD-L1-based immunotherapy.</div></div>\",\"PeriodicalId\":9902,\"journal\":{\"name\":\"Cellular signalling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular signalling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898656824004352\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898656824004352","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
CAF-secreted LOX promotes PD-L1 expression via histone Lactylation and regulates tumor EMT through TGFβ/IGF1 signaling in gastric Cancer
In gastric cancer treatment, cancer-associated fibroblasts (CAF) may significantly influence the efficacy of immune checkpoint inhibitors by modulating PD-L1 expression. However, the precise mechanisms remain unclear. This study aims to explore the relationship between CAF and PD-L1 expression, providing new insights for improving PD-L1-targeted therapies.
Using primary fibroblasts, transcriptome sequencing, ChIP-qPCR, and a lung metastasis model, we discovered that CAF secrete lysyl oxidase (LOX), which activates the TGFβ signaling pathway in gastric cancer cells, thereby promoting insulin-like growth factor 1(IGF1) expression. Upregulation of IGF1 enhances gastric cancer cell migration, epithelial-mesenchymal transition (EMT), and glycolysis. Additionally, we found that lactate accumulation leads to lysine 18 lactylation on histone H3 (H3K18la), which enriches at the PD-L1 promoter region, thus promoting PD-L1 transcription. These findings suggest that CAF may diminish the effectiveness of PD-1/PD-L1 blockade immunotherapy through LOX-induced glycolysis and lactate accumulation. Consequently, we have constructed a model of the interactions among CAF, lactate, and PD-L1 in gastric cancer progression, providing new experimental evidence for PD-L1-based immunotherapy.
期刊介绍:
Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo.
Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.