{"title":"水汽循环对寒冷地区降水贡献的定量分析","authors":"","doi":"10.1016/j.atmosres.2024.107729","DOIUrl":null,"url":null,"abstract":"<div><div>This study quantitatively analyzed the contribution rate of recycled moisture to precipitation in the basin based on the Craig-Gordon model and the three-end-member mixing model through selecting 456 precipitation sample data collected from six sampling points in the source region of the Yellow River from September 2019 to August 2021. The results showed that: the contribution rate of moisture recycling to precipitation during the growing season is 40 %, and the total contribution to local moisture recycling is equivalent to 41 mm of precipitation. The contribution rate of evaporation and transpiration has obvious seasonal variation characteristics, showing a trend of decreasing first and then increasing in the source region of the Yellow River. Spatially, the contribution rate of evaporation and transpiration showed an increasing trend from south to north. It is assumed that all the precipitation generated by moisture recycling produces runoff, and the water yield is about 51 × 10<sup>8</sup> m<sup>3</sup>, which is 25 % of the total annual average runoff. In addition, the proportion of local moisture recirculation is mainly related to altitude, topography, vegetation coverage, and meteorological factors. Moisture recirculation is one of the important sources of precipitation in the source region of the Yellow River.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative analysis of the contribution of moisture recycling to precipitation in the cold region\",\"authors\":\"\",\"doi\":\"10.1016/j.atmosres.2024.107729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study quantitatively analyzed the contribution rate of recycled moisture to precipitation in the basin based on the Craig-Gordon model and the three-end-member mixing model through selecting 456 precipitation sample data collected from six sampling points in the source region of the Yellow River from September 2019 to August 2021. The results showed that: the contribution rate of moisture recycling to precipitation during the growing season is 40 %, and the total contribution to local moisture recycling is equivalent to 41 mm of precipitation. The contribution rate of evaporation and transpiration has obvious seasonal variation characteristics, showing a trend of decreasing first and then increasing in the source region of the Yellow River. Spatially, the contribution rate of evaporation and transpiration showed an increasing trend from south to north. It is assumed that all the precipitation generated by moisture recycling produces runoff, and the water yield is about 51 × 10<sup>8</sup> m<sup>3</sup>, which is 25 % of the total annual average runoff. In addition, the proportion of local moisture recirculation is mainly related to altitude, topography, vegetation coverage, and meteorological factors. Moisture recirculation is one of the important sources of precipitation in the source region of the Yellow River.</div></div>\",\"PeriodicalId\":8600,\"journal\":{\"name\":\"Atmospheric Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169809524005118\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169809524005118","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
本研究通过选取2019年9月至2021年8月黄河源区6个采样点采集的456个降水样资料,基于Craig-Gordon模型和三端成员混合模型,定量分析了流域内循环水汽对降水的贡献率。结果表明:生长季水汽循环对降水的贡献率为 40%,对当地水汽循环的总贡献相当于 41 mm 降水量。蒸发蒸腾贡献率具有明显的季节变化特征,在黄河源区呈先减后增的趋势。从空间上看,蒸发蒸腾贡献率由南向北呈上升趋势。假设墒情循环产生的降水全部产生径流,产水量约为 51 × 108 m3,占年均径流总量的 25%。此外,当地水汽再循环的比例主要与海拔、地形、植被覆盖率和气象因素有关。水汽再循环是黄河源区降水的重要来源之一。
Quantitative analysis of the contribution of moisture recycling to precipitation in the cold region
This study quantitatively analyzed the contribution rate of recycled moisture to precipitation in the basin based on the Craig-Gordon model and the three-end-member mixing model through selecting 456 precipitation sample data collected from six sampling points in the source region of the Yellow River from September 2019 to August 2021. The results showed that: the contribution rate of moisture recycling to precipitation during the growing season is 40 %, and the total contribution to local moisture recycling is equivalent to 41 mm of precipitation. The contribution rate of evaporation and transpiration has obvious seasonal variation characteristics, showing a trend of decreasing first and then increasing in the source region of the Yellow River. Spatially, the contribution rate of evaporation and transpiration showed an increasing trend from south to north. It is assumed that all the precipitation generated by moisture recycling produces runoff, and the water yield is about 51 × 108 m3, which is 25 % of the total annual average runoff. In addition, the proportion of local moisture recirculation is mainly related to altitude, topography, vegetation coverage, and meteorological factors. Moisture recirculation is one of the important sources of precipitation in the source region of the Yellow River.
期刊介绍:
The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.