{"title":"云-边缘连续体中基于边缘应用协调的分布式功能即服务(FaaS)深度强化学习方法","authors":"Mina Emami Khansari, Saeed Sharifian","doi":"10.1016/j.jnca.2024.104042","DOIUrl":null,"url":null,"abstract":"<div><div>Serverless computing has emerged as a new cloud computing model which in contrast to IoT offers unlimited and scalable access to resources. This paradigm improves resource utilization, cost, scalability and resource management specifically in terms of irregular incoming traffic. While cloud computing has been known as a reliable computing and storage solution to host IoT applications, it is not suitable for bandwidth limited, real time and secure applications. Therefore, shifting the resources of the cloud-edge continuum towards the edge can mitigate these limitations. In serverless architecture, applications implemented as Function as a Service (FaaS), include a set of chained event-driven microservices which have to be assigned to available instances. IoT microservices orchestration is still a challenging issue in serverless computing architecture due to IoT dynamic, heterogeneous and large-scale environment with limited resources. The integration of FaaS and distributed Deep Reinforcement Learning (DRL) can transform serverless computing by improving microservice execution effectiveness and optimizing real-time application orchestration. This combination improves scalability and adaptability across the edge-cloud continuum. In this paper, we present a novel Deep Reinforcement Learning (DRL) based microservice orchestration approach for the serverless edge-cloud continuum to minimize resource utilization and delay. This approach, unlike existing methods, is distributed and requires a minimum subset of realistic data in each interval to find optimal compositions in the proposed edge serverless architecture and is thus suitable for IoT environment. Experiments conducted using a number of real-world scenarios demonstrate improvement of the number of successfully composed applications by 18%, respectively, compared to state-of-the art methods including Load Balance, Shortest Path algorithms.</div></div>","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"233 ","pages":"Article 104042"},"PeriodicalIF":7.7000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep reinforcement learning approach towards distributed Function as a Service (FaaS) based edge application orchestration in cloud-edge continuum\",\"authors\":\"Mina Emami Khansari, Saeed Sharifian\",\"doi\":\"10.1016/j.jnca.2024.104042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Serverless computing has emerged as a new cloud computing model which in contrast to IoT offers unlimited and scalable access to resources. This paradigm improves resource utilization, cost, scalability and resource management specifically in terms of irregular incoming traffic. While cloud computing has been known as a reliable computing and storage solution to host IoT applications, it is not suitable for bandwidth limited, real time and secure applications. Therefore, shifting the resources of the cloud-edge continuum towards the edge can mitigate these limitations. In serverless architecture, applications implemented as Function as a Service (FaaS), include a set of chained event-driven microservices which have to be assigned to available instances. IoT microservices orchestration is still a challenging issue in serverless computing architecture due to IoT dynamic, heterogeneous and large-scale environment with limited resources. The integration of FaaS and distributed Deep Reinforcement Learning (DRL) can transform serverless computing by improving microservice execution effectiveness and optimizing real-time application orchestration. This combination improves scalability and adaptability across the edge-cloud continuum. In this paper, we present a novel Deep Reinforcement Learning (DRL) based microservice orchestration approach for the serverless edge-cloud continuum to minimize resource utilization and delay. This approach, unlike existing methods, is distributed and requires a minimum subset of realistic data in each interval to find optimal compositions in the proposed edge serverless architecture and is thus suitable for IoT environment. Experiments conducted using a number of real-world scenarios demonstrate improvement of the number of successfully composed applications by 18%, respectively, compared to state-of-the art methods including Load Balance, Shortest Path algorithms.</div></div>\",\"PeriodicalId\":54784,\"journal\":{\"name\":\"Journal of Network and Computer Applications\",\"volume\":\"233 \",\"pages\":\"Article 104042\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Network and Computer Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1084804524002194\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084804524002194","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A deep reinforcement learning approach towards distributed Function as a Service (FaaS) based edge application orchestration in cloud-edge continuum
Serverless computing has emerged as a new cloud computing model which in contrast to IoT offers unlimited and scalable access to resources. This paradigm improves resource utilization, cost, scalability and resource management specifically in terms of irregular incoming traffic. While cloud computing has been known as a reliable computing and storage solution to host IoT applications, it is not suitable for bandwidth limited, real time and secure applications. Therefore, shifting the resources of the cloud-edge continuum towards the edge can mitigate these limitations. In serverless architecture, applications implemented as Function as a Service (FaaS), include a set of chained event-driven microservices which have to be assigned to available instances. IoT microservices orchestration is still a challenging issue in serverless computing architecture due to IoT dynamic, heterogeneous and large-scale environment with limited resources. The integration of FaaS and distributed Deep Reinforcement Learning (DRL) can transform serverless computing by improving microservice execution effectiveness and optimizing real-time application orchestration. This combination improves scalability and adaptability across the edge-cloud continuum. In this paper, we present a novel Deep Reinforcement Learning (DRL) based microservice orchestration approach for the serverless edge-cloud continuum to minimize resource utilization and delay. This approach, unlike existing methods, is distributed and requires a minimum subset of realistic data in each interval to find optimal compositions in the proposed edge serverless architecture and is thus suitable for IoT environment. Experiments conducted using a number of real-world scenarios demonstrate improvement of the number of successfully composed applications by 18%, respectively, compared to state-of-the art methods including Load Balance, Shortest Path algorithms.
期刊介绍:
The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.