Haiming Huang , Wenyu Zhao , Mingyang Yang , Songtao Xue , Zedong He , Amel Laref
{"title":"二维 MoSi2N4/ScSi2N4 异质结的半金属行为和各向异性","authors":"Haiming Huang , Wenyu Zhao , Mingyang Yang , Songtao Xue , Zedong He , Amel Laref","doi":"10.1016/j.jmmm.2024.172592","DOIUrl":null,"url":null,"abstract":"<div><div>Heterojunctions formed by stacking different two-dimensional monolayer materials typically have tunable electronic properties, which will greatly broaden the application prospects of 2D materials in electron devices. In this paper, the structures, electron properties, and anisotropy of MoSi<sub>2</sub>N<sub>4</sub>/ScSi<sub>2</sub>N<sub>4</sub> heterojunctions formed by stacking MoSi<sub>2</sub>N<sub>4</sub> monolayer with semiconductor properties and ScSi<sub>2</sub>N<sub>4</sub> monolayer with half-metallic properties have been systematically studied. The results show that Type-Ⅰ configuration has the most stable structure in terms of total energy, binding energy, phonon spectrum and molecular dynamics among the three configurations formed by MoSi<sub>2</sub>N<sub>4</sub>/ScSi<sub>2</sub>N<sub>4</sub> heterojunctions. The MoSi<sub>2</sub>N<sub>4</sub>/ScSi<sub>2</sub>N<sub>4</sub> heterojunction has robust half-metallic behavior and tensile anisotropy at equilibrium. At the same time, MoSi<sub>2</sub>N<sub>4</sub>/ScSi<sub>2</sub>N<sub>4</sub> heterojunction can still maintain stable ferromagnetic and half-metallic properties under large interlayer distance changes. Studies of magnetic anisotropy show that the direction of hard axis for MoSi<sub>2</sub>N<sub>4</sub>/ScSi<sub>2</sub>N<sub>4</sub> heterojunction is perpendicular to the 2D layer plane. The tunable properties of MoSi<sub>2</sub>N<sub>4</sub>/ScSi<sub>2</sub>N<sub>4</sub> heterojunction provides promising exploration for novel 2D materials.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"610 ","pages":"Article 172592"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Half-metallic behavior and anisotropy of two-dimensional MoSi2N4/ScSi2N4 heterojunction\",\"authors\":\"Haiming Huang , Wenyu Zhao , Mingyang Yang , Songtao Xue , Zedong He , Amel Laref\",\"doi\":\"10.1016/j.jmmm.2024.172592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Heterojunctions formed by stacking different two-dimensional monolayer materials typically have tunable electronic properties, which will greatly broaden the application prospects of 2D materials in electron devices. In this paper, the structures, electron properties, and anisotropy of MoSi<sub>2</sub>N<sub>4</sub>/ScSi<sub>2</sub>N<sub>4</sub> heterojunctions formed by stacking MoSi<sub>2</sub>N<sub>4</sub> monolayer with semiconductor properties and ScSi<sub>2</sub>N<sub>4</sub> monolayer with half-metallic properties have been systematically studied. The results show that Type-Ⅰ configuration has the most stable structure in terms of total energy, binding energy, phonon spectrum and molecular dynamics among the three configurations formed by MoSi<sub>2</sub>N<sub>4</sub>/ScSi<sub>2</sub>N<sub>4</sub> heterojunctions. The MoSi<sub>2</sub>N<sub>4</sub>/ScSi<sub>2</sub>N<sub>4</sub> heterojunction has robust half-metallic behavior and tensile anisotropy at equilibrium. At the same time, MoSi<sub>2</sub>N<sub>4</sub>/ScSi<sub>2</sub>N<sub>4</sub> heterojunction can still maintain stable ferromagnetic and half-metallic properties under large interlayer distance changes. Studies of magnetic anisotropy show that the direction of hard axis for MoSi<sub>2</sub>N<sub>4</sub>/ScSi<sub>2</sub>N<sub>4</sub> heterojunction is perpendicular to the 2D layer plane. The tunable properties of MoSi<sub>2</sub>N<sub>4</sub>/ScSi<sub>2</sub>N<sub>4</sub> heterojunction provides promising exploration for novel 2D materials.</div></div>\",\"PeriodicalId\":366,\"journal\":{\"name\":\"Journal of Magnetism and Magnetic Materials\",\"volume\":\"610 \",\"pages\":\"Article 172592\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnetism and Magnetic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304885324008837\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetism and Magnetic Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304885324008837","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Half-metallic behavior and anisotropy of two-dimensional MoSi2N4/ScSi2N4 heterojunction
Heterojunctions formed by stacking different two-dimensional monolayer materials typically have tunable electronic properties, which will greatly broaden the application prospects of 2D materials in electron devices. In this paper, the structures, electron properties, and anisotropy of MoSi2N4/ScSi2N4 heterojunctions formed by stacking MoSi2N4 monolayer with semiconductor properties and ScSi2N4 monolayer with half-metallic properties have been systematically studied. The results show that Type-Ⅰ configuration has the most stable structure in terms of total energy, binding energy, phonon spectrum and molecular dynamics among the three configurations formed by MoSi2N4/ScSi2N4 heterojunctions. The MoSi2N4/ScSi2N4 heterojunction has robust half-metallic behavior and tensile anisotropy at equilibrium. At the same time, MoSi2N4/ScSi2N4 heterojunction can still maintain stable ferromagnetic and half-metallic properties under large interlayer distance changes. Studies of magnetic anisotropy show that the direction of hard axis for MoSi2N4/ScSi2N4 heterojunction is perpendicular to the 2D layer plane. The tunable properties of MoSi2N4/ScSi2N4 heterojunction provides promising exploration for novel 2D materials.
期刊介绍:
The Journal of Magnetism and Magnetic Materials provides an important forum for the disclosure and discussion of original contributions covering the whole spectrum of topics, from basic magnetism to the technology and applications of magnetic materials. The journal encourages greater interaction between the basic and applied sub-disciplines of magnetism with comprehensive review articles, in addition to full-length contributions. In addition, other categories of contributions are welcome, including Critical Focused issues, Current Perspectives and Outreach to the General Public.
Main Categories:
Full-length articles:
Technically original research documents that report results of value to the communities that comprise the journal audience. The link between chemical, structural and microstructural properties on the one hand and magnetic properties on the other hand are encouraged.
In addition to general topics covering all areas of magnetism and magnetic materials, the full-length articles also include three sub-sections, focusing on Nanomagnetism, Spintronics and Applications.
The sub-section on Nanomagnetism contains articles on magnetic nanoparticles, nanowires, thin films, 2D materials and other nanoscale magnetic materials and their applications.
The sub-section on Spintronics contains articles on magnetoresistance, magnetoimpedance, magneto-optical phenomena, Micro-Electro-Mechanical Systems (MEMS), and other topics related to spin current control and magneto-transport phenomena. The sub-section on Applications display papers that focus on applications of magnetic materials. The applications need to show a connection to magnetism.
Review articles:
Review articles organize, clarify, and summarize existing major works in the areas covered by the Journal and provide comprehensive citations to the full spectrum of relevant literature.