{"title":"从埃及阿苏特尼罗河附近近地表沉积物的雷达波图片解释中获得古环境和气候变化的证据","authors":"","doi":"10.1016/j.jappgeo.2024.105533","DOIUrl":null,"url":null,"abstract":"<div><div>Different palaeoenvironmental features that pose natural geological, environmental, and engineering hazards to human operations occur frequently around the Nile Valley. Moreover, where these features were initially created, their relevance focuses on how the urban communities responded to the processes. So, a ground penetrating radar (GPR) field survey was carried out on different paleoenvironments of Pre-Quaternary and Quaternary sediment around Assiut. Deep and critical analyses of georadar facies were made to obtain clear images of these features with unprecedented resolution. The main objective of this study is to find some reasonable geological interpretations for these features. From this study, it is possible to identify and differentiate these features originating from different geological environments and climatological conditions in arid regions such as those around Assiut. In addition, the study serves as guidelines for environmental management and climatic changes for enhancing knowledge of urban development. Also, the study demonstrates how georadar can be used to create precise images of intricate shallow subsurface anatomy with possible palaeoenvironmental and palaeoclimatic indicators.</div></div>","PeriodicalId":54882,"journal":{"name":"Journal of Applied Geophysics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evidence of palaeoenvironmental and climatic changes from the interpreted radar wave pictures of near surface sediments around the River Nile, Assiut, Egypt\",\"authors\":\"\",\"doi\":\"10.1016/j.jappgeo.2024.105533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Different palaeoenvironmental features that pose natural geological, environmental, and engineering hazards to human operations occur frequently around the Nile Valley. Moreover, where these features were initially created, their relevance focuses on how the urban communities responded to the processes. So, a ground penetrating radar (GPR) field survey was carried out on different paleoenvironments of Pre-Quaternary and Quaternary sediment around Assiut. Deep and critical analyses of georadar facies were made to obtain clear images of these features with unprecedented resolution. The main objective of this study is to find some reasonable geological interpretations for these features. From this study, it is possible to identify and differentiate these features originating from different geological environments and climatological conditions in arid regions such as those around Assiut. In addition, the study serves as guidelines for environmental management and climatic changes for enhancing knowledge of urban development. Also, the study demonstrates how georadar can be used to create precise images of intricate shallow subsurface anatomy with possible palaeoenvironmental and palaeoclimatic indicators.</div></div>\",\"PeriodicalId\":54882,\"journal\":{\"name\":\"Journal of Applied Geophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926985124002490\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geophysics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926985124002490","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Evidence of palaeoenvironmental and climatic changes from the interpreted radar wave pictures of near surface sediments around the River Nile, Assiut, Egypt
Different palaeoenvironmental features that pose natural geological, environmental, and engineering hazards to human operations occur frequently around the Nile Valley. Moreover, where these features were initially created, their relevance focuses on how the urban communities responded to the processes. So, a ground penetrating radar (GPR) field survey was carried out on different paleoenvironments of Pre-Quaternary and Quaternary sediment around Assiut. Deep and critical analyses of georadar facies were made to obtain clear images of these features with unprecedented resolution. The main objective of this study is to find some reasonable geological interpretations for these features. From this study, it is possible to identify and differentiate these features originating from different geological environments and climatological conditions in arid regions such as those around Assiut. In addition, the study serves as guidelines for environmental management and climatic changes for enhancing knowledge of urban development. Also, the study demonstrates how georadar can be used to create precise images of intricate shallow subsurface anatomy with possible palaeoenvironmental and palaeoclimatic indicators.
期刊介绍:
The Journal of Applied Geophysics with its key objective of responding to pertinent and timely needs, places particular emphasis on methodological developments and innovative applications of geophysical techniques for addressing environmental, engineering, and hydrological problems. Related topical research in exploration geophysics and in soil and rock physics is also covered by the Journal of Applied Geophysics.