N. Kvashin , N. Anento , G. Bonny , A. Serra , L. Malerba
{"title":"论 k-ART 在研究 α-Fe 中小点缺陷簇的动力学方面优于 MD 的能力","authors":"N. Kvashin , N. Anento , G. Bonny , A. Serra , L. Malerba","doi":"10.1016/j.jnucmat.2024.155444","DOIUrl":null,"url":null,"abstract":"<div><div>Molecular Dynamics simulations, while contributing to the understanding of the mechanisms of diffusion and interactions of point defects and their clusters, are inherently limited in their temporal scope (few nanoseconds). This constraint becomes particularly evident when studying the dynamics of vacancies at low temperatures, where their jump frequency is exceedingly low, posing challenges for accurate reproduction. Additionally, the size of the simulation box imposes constraints, influencing the representation of the system and potentially affecting the accuracy of results. A relatively new kinetic activation-relaxation technique (k-ART) efficiently resolves the limitations of MD simulations, such as computation time and system dimensionality, without the need for a priori knowledge of the simulated system. This technique enables simulations lasting up to several seconds and encompassing systems with higher dimensions. In this paper we check the validity of k-ART to reproduce accurately the migration mechanisms and energies of point defects and small clusters, previously obtained by MD and validated experimentally. We point out the advantages and difficulties of using AKMC with k-ART.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"603 ","pages":"Article 155444"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the capabilities of k-ART over MD for the study of the kinetics of small point defect clusters in α-Fe\",\"authors\":\"N. Kvashin , N. Anento , G. Bonny , A. Serra , L. Malerba\",\"doi\":\"10.1016/j.jnucmat.2024.155444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Molecular Dynamics simulations, while contributing to the understanding of the mechanisms of diffusion and interactions of point defects and their clusters, are inherently limited in their temporal scope (few nanoseconds). This constraint becomes particularly evident when studying the dynamics of vacancies at low temperatures, where their jump frequency is exceedingly low, posing challenges for accurate reproduction. Additionally, the size of the simulation box imposes constraints, influencing the representation of the system and potentially affecting the accuracy of results. A relatively new kinetic activation-relaxation technique (k-ART) efficiently resolves the limitations of MD simulations, such as computation time and system dimensionality, without the need for a priori knowledge of the simulated system. This technique enables simulations lasting up to several seconds and encompassing systems with higher dimensions. In this paper we check the validity of k-ART to reproduce accurately the migration mechanisms and energies of point defects and small clusters, previously obtained by MD and validated experimentally. We point out the advantages and difficulties of using AKMC with k-ART.</div></div>\",\"PeriodicalId\":373,\"journal\":{\"name\":\"Journal of Nuclear Materials\",\"volume\":\"603 \",\"pages\":\"Article 155444\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022311524005440\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311524005440","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
On the capabilities of k-ART over MD for the study of the kinetics of small point defect clusters in α-Fe
Molecular Dynamics simulations, while contributing to the understanding of the mechanisms of diffusion and interactions of point defects and their clusters, are inherently limited in their temporal scope (few nanoseconds). This constraint becomes particularly evident when studying the dynamics of vacancies at low temperatures, where their jump frequency is exceedingly low, posing challenges for accurate reproduction. Additionally, the size of the simulation box imposes constraints, influencing the representation of the system and potentially affecting the accuracy of results. A relatively new kinetic activation-relaxation technique (k-ART) efficiently resolves the limitations of MD simulations, such as computation time and system dimensionality, without the need for a priori knowledge of the simulated system. This technique enables simulations lasting up to several seconds and encompassing systems with higher dimensions. In this paper we check the validity of k-ART to reproduce accurately the migration mechanisms and energies of point defects and small clusters, previously obtained by MD and validated experimentally. We point out the advantages and difficulties of using AKMC with k-ART.
期刊介绍:
The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome.
The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example.
Topics covered by JNM
Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior.
Materials aspects of the entire fuel cycle.
Materials aspects of the actinides and their compounds.
Performance of nuclear waste materials; materials aspects of the immobilization of wastes.
Fusion reactor materials, including first walls, blankets, insulators and magnets.
Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties.
Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.