S 型 TiO2/g-C3N4 纳米复合材料在可见光下有效降解菲

IF 4.9 2区 化学 Q2 CHEMISTRY, PHYSICAL Colloids and Surfaces A: Physicochemical and Engineering Aspects Pub Date : 2024-10-14 DOI:10.1016/j.colsurfa.2024.135554
{"title":"S 型 TiO2/g-C3N4 纳米复合材料在可见光下有效降解菲","authors":"","doi":"10.1016/j.colsurfa.2024.135554","DOIUrl":null,"url":null,"abstract":"<div><div>It is a challenge to effectively degrade phenanthrene (PHE) pollutants, which are widely present in aquatic environments, in order to reduce harm to humans and ecosystems. In this study, an S-scheme TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> photocatalytic system is constructed using 0D TiO<sub>2</sub> nanospheres and 2D g-C<sub>3</sub>N<sub>4</sub> nanosheets for the removal of PHE from water under sunlight irradiation. The effects of irradiation time, quality ratio of TiO<sub>2</sub> to g-C<sub>3</sub>N<sub>4</sub>, and cycle time on the performance of the TiO<sub>2</sub>/CN photocatalyst are investigated. The experimental results show that the ratio of TiO<sub>2</sub> to g-C<sub>3</sub>N<sub>4</sub> significantly affects the photocatalytic activity of the photocatalyst. Under the optimal ratio of TiO<sub>2</sub> to g-C<sub>3</sub>N<sub>4</sub> (50 % TiO<sub>2</sub>/CN), the apparent reaction rate constant for phenanthrene reached 0.00796 min<sup>−1</sup>, which is 11.5 times higher than that of pure TiO<sub>2</sub> (0.00069 min<sup>−1</sup>). The tests of optical performance and photoelectrochemical properties further confirmed that the construction of the TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> S-type photocatalyst successfully enhanced the spatial separation efficiency of photogenerated carriers and ensured a continuous supply of energy during the redox reaction process. Converting highly toxic phenanthrene into a non-toxic green degradation product provides an practical strategy for the safe treatment of PHE in aqueous environments through the use of visible-light-driven heterojunction photocatalysts. Additionally, the data collected on phenanthrene degradation in this study will provide valuable references for developing degradation methods for other PAHs, such as naphthalene, anthracene, and pyrene.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An S-scheme TiO2/g-C3N4 nanocomposite effectively degrades phenanthrene under visible light\",\"authors\":\"\",\"doi\":\"10.1016/j.colsurfa.2024.135554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It is a challenge to effectively degrade phenanthrene (PHE) pollutants, which are widely present in aquatic environments, in order to reduce harm to humans and ecosystems. In this study, an S-scheme TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> photocatalytic system is constructed using 0D TiO<sub>2</sub> nanospheres and 2D g-C<sub>3</sub>N<sub>4</sub> nanosheets for the removal of PHE from water under sunlight irradiation. The effects of irradiation time, quality ratio of TiO<sub>2</sub> to g-C<sub>3</sub>N<sub>4</sub>, and cycle time on the performance of the TiO<sub>2</sub>/CN photocatalyst are investigated. The experimental results show that the ratio of TiO<sub>2</sub> to g-C<sub>3</sub>N<sub>4</sub> significantly affects the photocatalytic activity of the photocatalyst. Under the optimal ratio of TiO<sub>2</sub> to g-C<sub>3</sub>N<sub>4</sub> (50 % TiO<sub>2</sub>/CN), the apparent reaction rate constant for phenanthrene reached 0.00796 min<sup>−1</sup>, which is 11.5 times higher than that of pure TiO<sub>2</sub> (0.00069 min<sup>−1</sup>). The tests of optical performance and photoelectrochemical properties further confirmed that the construction of the TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> S-type photocatalyst successfully enhanced the spatial separation efficiency of photogenerated carriers and ensured a continuous supply of energy during the redox reaction process. Converting highly toxic phenanthrene into a non-toxic green degradation product provides an practical strategy for the safe treatment of PHE in aqueous environments through the use of visible-light-driven heterojunction photocatalysts. Additionally, the data collected on phenanthrene degradation in this study will provide valuable references for developing degradation methods for other PAHs, such as naphthalene, anthracene, and pyrene.</div></div>\",\"PeriodicalId\":278,\"journal\":{\"name\":\"Colloids and Surfaces A: Physicochemical and Engineering Aspects\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces A: Physicochemical and Engineering Aspects\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092777572402418X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092777572402418X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

如何有效降解广泛存在于水环境中的菲类(PHE)污染物,以减少对人类和生态系统的危害,是一项挑战。本研究利用 0D TiO2 纳米球和 2D g-C3N4 纳米片构建了一个 S 型 TiO2/g-C3N4 光催化系统,用于在阳光照射下去除水中的 PHE。研究了辐照时间、TiO2 与 g-C3N4 的质量比以及循环时间对 TiO2/CN 光催化剂性能的影响。实验结果表明,TiO2 与 g-C3N4 的质量比会显著影响光催化剂的光催化活性。在 TiO2 与 g-C3N4 的最佳比例(50% TiO2/CN)下,菲的表观反应速率常数达到 0.00796 min-1,是纯 TiO2(0.00069 min-1)的 11.5 倍。光学性能和光电化学性质测试进一步证实,TiO2/g-C3N4 S 型光催化剂的构建成功提高了光生载流子的空间分离效率,确保了氧化还原反应过程中能量的持续供应。通过使用可见光驱动的异质结光催化剂,将剧毒菲转化为无毒的绿色降解产物,为安全处理水环境中的 PHE 提供了一种实用策略。此外,本研究收集的菲降解数据将为开发萘、蒽和芘等其他多环芳烃的降解方法提供有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An S-scheme TiO2/g-C3N4 nanocomposite effectively degrades phenanthrene under visible light
It is a challenge to effectively degrade phenanthrene (PHE) pollutants, which are widely present in aquatic environments, in order to reduce harm to humans and ecosystems. In this study, an S-scheme TiO2/g-C3N4 photocatalytic system is constructed using 0D TiO2 nanospheres and 2D g-C3N4 nanosheets for the removal of PHE from water under sunlight irradiation. The effects of irradiation time, quality ratio of TiO2 to g-C3N4, and cycle time on the performance of the TiO2/CN photocatalyst are investigated. The experimental results show that the ratio of TiO2 to g-C3N4 significantly affects the photocatalytic activity of the photocatalyst. Under the optimal ratio of TiO2 to g-C3N4 (50 % TiO2/CN), the apparent reaction rate constant for phenanthrene reached 0.00796 min−1, which is 11.5 times higher than that of pure TiO2 (0.00069 min−1). The tests of optical performance and photoelectrochemical properties further confirmed that the construction of the TiO2/g-C3N4 S-type photocatalyst successfully enhanced the spatial separation efficiency of photogenerated carriers and ensured a continuous supply of energy during the redox reaction process. Converting highly toxic phenanthrene into a non-toxic green degradation product provides an practical strategy for the safe treatment of PHE in aqueous environments through the use of visible-light-driven heterojunction photocatalysts. Additionally, the data collected on phenanthrene degradation in this study will provide valuable references for developing degradation methods for other PAHs, such as naphthalene, anthracene, and pyrene.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
9.60%
发文量
2421
审稿时长
56 days
期刊介绍: Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena. The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.
期刊最新文献
Cyclodextrin effects on the distribution, solubility and transport properties of umifenovir Organic polymer composite with inorganic SiO2 particles for mechanical robustness and self-cleaning anti-reflective coatings A novel molecularly imprinted electrochemical sensor based on MnO-Fe3O4@C was designed with DFT theoretical study for the detection of thiamphenicol in food An S-scheme TiO2/g-C3N4 nanocomposite effectively degrades phenanthrene under visible light Molecular insight into the interfacial microstructural and miscible behavior of CO2 flooding in tight reservoir
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1