Lin Wu , Xingqiang Feng , Lei Zhou , Shuwei Guan , Dongsheng Ji , Yuanlong Tan , Linyan Zhang
{"title":"中国西北部准噶尔盆地南部空间变化的应力机制","authors":"Lin Wu , Xingqiang Feng , Lei Zhou , Shuwei Guan , Dongsheng Ji , Yuanlong Tan , Linyan Zhang","doi":"10.1016/j.tecto.2024.230516","DOIUrl":null,"url":null,"abstract":"<div><div>The southern Junggar Basin in NW China is an important tectonic unit in the region of the Tibetan Plateau and has been the focus of considerable research into its tectonic processes and geodynamic setting. However, the relationship between deep structural deformation and stress in this region remains unclear. This study investigates the Gaoquan and Hutubi anticlines in the southern Junggar Basin using three-dimensional geophysical data and a finite-element numerical simulation to examine the crustal stress distribution and stress regime at depths of up to 7 km. Numerical simulation results indicate that the stress regime in the southern Junggar Basin changes from west to east. In the western part of the region, including the Gaoquan anticline at depths of 4900–6100 m, the maximum horizontal principal stress shows a peak of 140–200 MPa, the minimum horizontal principal stress is 110–170 MPa, and the vertical principal stress is 115–175 MPa, indicating a mixed stress regime incorporating both compression and strike-slip components. In the eastern part of the region, including the Hutubi anticline at depths of 5400–7800 m, the maximum horizontal principal stress shows a peak of 160–280 MPa, the minimum horizontal principal stress is 155–250 MPa, and the vertical principal stress is 125–215 MPa, indicating a compressive stress regime. The stress magnitude and orientation are affected by the presence of faults and depth in the crust. Combining these results with the regional tectonic setting, it is considered that the geometrical relationship between pre-existing faults and the current stress field is the main control on the west–east differentiation in the stress regime, with spatial variations in the mechanical parameters of the crust and the pressure coefficient being secondary factors. These results provide insights into the relationship between stress and deformation, and support the updated version of the World Stress Map database.</div></div>","PeriodicalId":22257,"journal":{"name":"Tectonophysics","volume":"891 ","pages":"Article 230516"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatially varying stress regime in the southern Junggar Basin, NW China\",\"authors\":\"Lin Wu , Xingqiang Feng , Lei Zhou , Shuwei Guan , Dongsheng Ji , Yuanlong Tan , Linyan Zhang\",\"doi\":\"10.1016/j.tecto.2024.230516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The southern Junggar Basin in NW China is an important tectonic unit in the region of the Tibetan Plateau and has been the focus of considerable research into its tectonic processes and geodynamic setting. However, the relationship between deep structural deformation and stress in this region remains unclear. This study investigates the Gaoquan and Hutubi anticlines in the southern Junggar Basin using three-dimensional geophysical data and a finite-element numerical simulation to examine the crustal stress distribution and stress regime at depths of up to 7 km. Numerical simulation results indicate that the stress regime in the southern Junggar Basin changes from west to east. In the western part of the region, including the Gaoquan anticline at depths of 4900–6100 m, the maximum horizontal principal stress shows a peak of 140–200 MPa, the minimum horizontal principal stress is 110–170 MPa, and the vertical principal stress is 115–175 MPa, indicating a mixed stress regime incorporating both compression and strike-slip components. In the eastern part of the region, including the Hutubi anticline at depths of 5400–7800 m, the maximum horizontal principal stress shows a peak of 160–280 MPa, the minimum horizontal principal stress is 155–250 MPa, and the vertical principal stress is 125–215 MPa, indicating a compressive stress regime. The stress magnitude and orientation are affected by the presence of faults and depth in the crust. Combining these results with the regional tectonic setting, it is considered that the geometrical relationship between pre-existing faults and the current stress field is the main control on the west–east differentiation in the stress regime, with spatial variations in the mechanical parameters of the crust and the pressure coefficient being secondary factors. These results provide insights into the relationship between stress and deformation, and support the updated version of the World Stress Map database.</div></div>\",\"PeriodicalId\":22257,\"journal\":{\"name\":\"Tectonophysics\",\"volume\":\"891 \",\"pages\":\"Article 230516\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tectonophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040195124003184\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tectonophysics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040195124003184","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Spatially varying stress regime in the southern Junggar Basin, NW China
The southern Junggar Basin in NW China is an important tectonic unit in the region of the Tibetan Plateau and has been the focus of considerable research into its tectonic processes and geodynamic setting. However, the relationship between deep structural deformation and stress in this region remains unclear. This study investigates the Gaoquan and Hutubi anticlines in the southern Junggar Basin using three-dimensional geophysical data and a finite-element numerical simulation to examine the crustal stress distribution and stress regime at depths of up to 7 km. Numerical simulation results indicate that the stress regime in the southern Junggar Basin changes from west to east. In the western part of the region, including the Gaoquan anticline at depths of 4900–6100 m, the maximum horizontal principal stress shows a peak of 140–200 MPa, the minimum horizontal principal stress is 110–170 MPa, and the vertical principal stress is 115–175 MPa, indicating a mixed stress regime incorporating both compression and strike-slip components. In the eastern part of the region, including the Hutubi anticline at depths of 5400–7800 m, the maximum horizontal principal stress shows a peak of 160–280 MPa, the minimum horizontal principal stress is 155–250 MPa, and the vertical principal stress is 125–215 MPa, indicating a compressive stress regime. The stress magnitude and orientation are affected by the presence of faults and depth in the crust. Combining these results with the regional tectonic setting, it is considered that the geometrical relationship between pre-existing faults and the current stress field is the main control on the west–east differentiation in the stress regime, with spatial variations in the mechanical parameters of the crust and the pressure coefficient being secondary factors. These results provide insights into the relationship between stress and deformation, and support the updated version of the World Stress Map database.
期刊介绍:
The prime focus of Tectonophysics will be high-impact original research and reviews in the fields of kinematics, structure, composition, and dynamics of the solid arth at all scales. Tectonophysics particularly encourages submission of papers based on the integration of a multitude of geophysical, geological, geochemical, geodynamic, and geotectonic methods