{"title":"雌激素受体激活 SRC 和 ERK1/2,促进人类睾丸胚胎癌细胞 NT2/D1 的肿瘤发生","authors":"Carla Macheroni, Deborah Simão Souza, Catarina Segreti Porto, Carolina Meloni Vicente","doi":"10.1016/j.yexcr.2024.114282","DOIUrl":null,"url":null,"abstract":"<div><div>Testicular germ cell tumors have the highest incidence in young men (between 15 and 44 years of age) and its etiology is still unclear, but its emergence on puberty suggests a hormone-dependent mechanism for the development of these tumors and their progression. We previously identified the estrogen receptor ESR1, ESR2, GPER and an isoform of ESR1, the ESR1-36 in human testicular embryonic carcinoma NT2/D1 cells, and the activation of SRC induced by ESR1 and ESR2 in these cells. Therefore, this study aimed to analyze the role of ER in the activation of ERK1/2, and the involvement of SRC and ERK1/2 on proliferation, migration, and invasion of the NT2/D1 cells. Our results showed that the activation of ESR1 (using ESR1-selective agonist PPT) or ESR2 (using ESR2-selective agonist DPN) increased phosphorylation of ERK1/2 in NT2/D1 cells. In the presence of the selective inhibitor for SRC-family kinases PP2, or the MEK specific inhibitor U0126, the effects of 17β-estradiol (E2) or PPT were blocked on proliferation and invasion of NT2/D1 cells. Finally, the proliferation, migration, and invasion of NT2/D1 cells simulated by E2 or ESR2 were also blocked by PP2 and U0126. This study provides novel insights into molecular mechanisms of ER in NT2/D1 cells by demonstrating that ER activates rapid responses molecules, including SRC and ERK1/2, which enhance the tumorigenic potential of testicular cancer cells.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"442 2","pages":"Article 114282"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estrogen receptor activates SRC and ERK1/2 and promotes tumorigenesis in human testicular embryonic carcinoma cells NT2/D1\",\"authors\":\"Carla Macheroni, Deborah Simão Souza, Catarina Segreti Porto, Carolina Meloni Vicente\",\"doi\":\"10.1016/j.yexcr.2024.114282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Testicular germ cell tumors have the highest incidence in young men (between 15 and 44 years of age) and its etiology is still unclear, but its emergence on puberty suggests a hormone-dependent mechanism for the development of these tumors and their progression. We previously identified the estrogen receptor ESR1, ESR2, GPER and an isoform of ESR1, the ESR1-36 in human testicular embryonic carcinoma NT2/D1 cells, and the activation of SRC induced by ESR1 and ESR2 in these cells. Therefore, this study aimed to analyze the role of ER in the activation of ERK1/2, and the involvement of SRC and ERK1/2 on proliferation, migration, and invasion of the NT2/D1 cells. Our results showed that the activation of ESR1 (using ESR1-selective agonist PPT) or ESR2 (using ESR2-selective agonist DPN) increased phosphorylation of ERK1/2 in NT2/D1 cells. In the presence of the selective inhibitor for SRC-family kinases PP2, or the MEK specific inhibitor U0126, the effects of 17β-estradiol (E2) or PPT were blocked on proliferation and invasion of NT2/D1 cells. Finally, the proliferation, migration, and invasion of NT2/D1 cells simulated by E2 or ESR2 were also blocked by PP2 and U0126. This study provides novel insights into molecular mechanisms of ER in NT2/D1 cells by demonstrating that ER activates rapid responses molecules, including SRC and ERK1/2, which enhance the tumorigenic potential of testicular cancer cells.</div></div>\",\"PeriodicalId\":12227,\"journal\":{\"name\":\"Experimental cell research\",\"volume\":\"442 2\",\"pages\":\"Article 114282\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental cell research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014482724003732\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482724003732","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Estrogen receptor activates SRC and ERK1/2 and promotes tumorigenesis in human testicular embryonic carcinoma cells NT2/D1
Testicular germ cell tumors have the highest incidence in young men (between 15 and 44 years of age) and its etiology is still unclear, but its emergence on puberty suggests a hormone-dependent mechanism for the development of these tumors and their progression. We previously identified the estrogen receptor ESR1, ESR2, GPER and an isoform of ESR1, the ESR1-36 in human testicular embryonic carcinoma NT2/D1 cells, and the activation of SRC induced by ESR1 and ESR2 in these cells. Therefore, this study aimed to analyze the role of ER in the activation of ERK1/2, and the involvement of SRC and ERK1/2 on proliferation, migration, and invasion of the NT2/D1 cells. Our results showed that the activation of ESR1 (using ESR1-selective agonist PPT) or ESR2 (using ESR2-selective agonist DPN) increased phosphorylation of ERK1/2 in NT2/D1 cells. In the presence of the selective inhibitor for SRC-family kinases PP2, or the MEK specific inhibitor U0126, the effects of 17β-estradiol (E2) or PPT were blocked on proliferation and invasion of NT2/D1 cells. Finally, the proliferation, migration, and invasion of NT2/D1 cells simulated by E2 or ESR2 were also blocked by PP2 and U0126. This study provides novel insights into molecular mechanisms of ER in NT2/D1 cells by demonstrating that ER activates rapid responses molecules, including SRC and ERK1/2, which enhance the tumorigenic potential of testicular cancer cells.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.