{"title":"改性 H-ZSM-5 在水性溶剂中催化 5- 羟甲基糠醛氧化时增强的路易斯酸性","authors":"Rahul Gautam, Neeraj Sharma, Kanika Saini, Shunmugavel Saravanamurugan","doi":"10.1016/j.mcat.2024.114610","DOIUrl":null,"url":null,"abstract":"<div><div>The primary focus of the present study is to develop a zeolite-based catalyst that enhances Lewis acidity for catalysing 5-hydroxymethylfurfural (HMF) oxidation. The study modifies the parent H-ZSM-5 (H-Z) via desilication followed by Ru impregnation. The results show that RuZS<sub>90</sub> (Ru impregnated on desilicated H-Z for 90 min) exhibits higher catalytic activity for the HMF oxidation than Ru impregnated on parent H-Z. NH<sub>3</sub>-temperature programmed desorption (TPD) results indicate that RuZS<sub>90</sub> possesses more than 2.6 and 2.3 times higher total acidity than H-Z and RuH-Z, contributing to the higher catalytic activity. A poisoning study with potassium thiocyanate (KSCN), which passivates Lewis acidic sites, suggests that RuZS<sub>90</sub> yields no considerable oxidised furanic products, confirming the crucial role of Lewis acidic sites. The NH<sub>3</sub>-DRIFT study further corroborates that RuZS<sub>90</sub> contains more enhanced Lewis acidic sites than the parent H-Z, playing a vital role in the oxidation of HMF.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114610"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Lewis acidity on modified H-ZSM-5 catalysed 5-hydroxymethylfurfural oxidation in aqueous solvent\",\"authors\":\"Rahul Gautam, Neeraj Sharma, Kanika Saini, Shunmugavel Saravanamurugan\",\"doi\":\"10.1016/j.mcat.2024.114610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The primary focus of the present study is to develop a zeolite-based catalyst that enhances Lewis acidity for catalysing 5-hydroxymethylfurfural (HMF) oxidation. The study modifies the parent H-ZSM-5 (H-Z) via desilication followed by Ru impregnation. The results show that RuZS<sub>90</sub> (Ru impregnated on desilicated H-Z for 90 min) exhibits higher catalytic activity for the HMF oxidation than Ru impregnated on parent H-Z. NH<sub>3</sub>-temperature programmed desorption (TPD) results indicate that RuZS<sub>90</sub> possesses more than 2.6 and 2.3 times higher total acidity than H-Z and RuH-Z, contributing to the higher catalytic activity. A poisoning study with potassium thiocyanate (KSCN), which passivates Lewis acidic sites, suggests that RuZS<sub>90</sub> yields no considerable oxidised furanic products, confirming the crucial role of Lewis acidic sites. The NH<sub>3</sub>-DRIFT study further corroborates that RuZS<sub>90</sub> contains more enhanced Lewis acidic sites than the parent H-Z, playing a vital role in the oxidation of HMF.</div></div>\",\"PeriodicalId\":393,\"journal\":{\"name\":\"Molecular Catalysis\",\"volume\":\"569 \",\"pages\":\"Article 114610\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468823124007922\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823124007922","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Enhanced Lewis acidity on modified H-ZSM-5 catalysed 5-hydroxymethylfurfural oxidation in aqueous solvent
The primary focus of the present study is to develop a zeolite-based catalyst that enhances Lewis acidity for catalysing 5-hydroxymethylfurfural (HMF) oxidation. The study modifies the parent H-ZSM-5 (H-Z) via desilication followed by Ru impregnation. The results show that RuZS90 (Ru impregnated on desilicated H-Z for 90 min) exhibits higher catalytic activity for the HMF oxidation than Ru impregnated on parent H-Z. NH3-temperature programmed desorption (TPD) results indicate that RuZS90 possesses more than 2.6 and 2.3 times higher total acidity than H-Z and RuH-Z, contributing to the higher catalytic activity. A poisoning study with potassium thiocyanate (KSCN), which passivates Lewis acidic sites, suggests that RuZS90 yields no considerable oxidised furanic products, confirming the crucial role of Lewis acidic sites. The NH3-DRIFT study further corroborates that RuZS90 contains more enhanced Lewis acidic sites than the parent H-Z, playing a vital role in the oxidation of HMF.
期刊介绍:
Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are:
Heterogeneous catalysis including immobilized molecular catalysts
Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis
Photo- and electrochemistry
Theoretical aspects of catalysis analyzed by computational methods