{"title":"用于鼻脑给药的天然蜡配制的积雪草酸固体脂质纳米颗粒的制备、理化表征、体内外评价","authors":"Tissana Rojanaratha , Paisan Tienthai , Warunya Woradulayapinij , Thunyatorn Yimsoo , Veerakiet Boonkanokwong , Garnpimol C. Ritthidej","doi":"10.1016/j.ejps.2024.106935","DOIUrl":null,"url":null,"abstract":"<div><div>Asiatic acid (AA) has neuroprotective potential for prevention and treatment of Alzheimer's disease. Natural waxes with various ratios of Tween 80 and Span 80 or soybean lecithin were formulated to obtain AA-loaded solid lipid nanoparticles (AA-SLN) to improve direct nose to brain transport. Optimal AA-SLN had particle size below 200 nm with uniform size distribution and zeta potential of nearly -30 mV indicating a low risk of particle aggregation. Formulation with rice bran wax, Tween 80, and soybean lecithin (AA-RwS<sub>100</sub>) showed the highest entrapment efficiency and yield of >98 % while <em>in vitro</em> AA release of AA-SLN was linearly up to 48 h For <em>ex vivo</em> permeation, confocal laser scanning microscopy (CLSM) and histopathological studies on porcine olfactory mucosa (OM) and respiratory mucosa (RM), AA-SLN showed significantly higher permeation across OM than RM (<em>p</em> < 0.05) up to 6 h and AA-RwS100 also showed the highest amount of drug permeated as confirmed by CLSM results. Although AA-SLN showed non-significantly lower permeation than AA solution (AA-SOL) (<em>p</em> > 0.05), no epithelial and mucosal structure damages were observed in OM treated with AA-RwS<sub>100</sub> and RM treated with all AA-SLNs indicating safety for nasal administration while AA-SOL showed significant damage to both OM and RM. In addition, <em>in vivo</em> brain distribution study by fluorescence imaging using Rhodamine (R6g) showed higher brain distribution after intranasal administration of R6g-loaded solid lipid nanoparticles (R6g-SLN) than R6g solution (R6g-SOL) and intravenous administration of R6g-SLN, and R6g-RwS<sub>100</sub> also showed the highest brain accumulation at 8 h post administration.</div></div>","PeriodicalId":12018,"journal":{"name":"European Journal of Pharmaceutical Sciences","volume":"203 ","pages":"Article 106935"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation, physicochemical characterization, ex vivo, and in vivo evaluations of asiatic acid-loaded solid lipid nanoparticles formulated with natural waxes for nose-to-brain delivery\",\"authors\":\"Tissana Rojanaratha , Paisan Tienthai , Warunya Woradulayapinij , Thunyatorn Yimsoo , Veerakiet Boonkanokwong , Garnpimol C. Ritthidej\",\"doi\":\"10.1016/j.ejps.2024.106935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Asiatic acid (AA) has neuroprotective potential for prevention and treatment of Alzheimer's disease. Natural waxes with various ratios of Tween 80 and Span 80 or soybean lecithin were formulated to obtain AA-loaded solid lipid nanoparticles (AA-SLN) to improve direct nose to brain transport. Optimal AA-SLN had particle size below 200 nm with uniform size distribution and zeta potential of nearly -30 mV indicating a low risk of particle aggregation. Formulation with rice bran wax, Tween 80, and soybean lecithin (AA-RwS<sub>100</sub>) showed the highest entrapment efficiency and yield of >98 % while <em>in vitro</em> AA release of AA-SLN was linearly up to 48 h For <em>ex vivo</em> permeation, confocal laser scanning microscopy (CLSM) and histopathological studies on porcine olfactory mucosa (OM) and respiratory mucosa (RM), AA-SLN showed significantly higher permeation across OM than RM (<em>p</em> < 0.05) up to 6 h and AA-RwS100 also showed the highest amount of drug permeated as confirmed by CLSM results. Although AA-SLN showed non-significantly lower permeation than AA solution (AA-SOL) (<em>p</em> > 0.05), no epithelial and mucosal structure damages were observed in OM treated with AA-RwS<sub>100</sub> and RM treated with all AA-SLNs indicating safety for nasal administration while AA-SOL showed significant damage to both OM and RM. In addition, <em>in vivo</em> brain distribution study by fluorescence imaging using Rhodamine (R6g) showed higher brain distribution after intranasal administration of R6g-loaded solid lipid nanoparticles (R6g-SLN) than R6g solution (R6g-SOL) and intravenous administration of R6g-SLN, and R6g-RwS<sub>100</sub> also showed the highest brain accumulation at 8 h post administration.</div></div>\",\"PeriodicalId\":12018,\"journal\":{\"name\":\"European Journal of Pharmaceutical Sciences\",\"volume\":\"203 \",\"pages\":\"Article 106935\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0928098724002483\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928098724002483","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Preparation, physicochemical characterization, ex vivo, and in vivo evaluations of asiatic acid-loaded solid lipid nanoparticles formulated with natural waxes for nose-to-brain delivery
Asiatic acid (AA) has neuroprotective potential for prevention and treatment of Alzheimer's disease. Natural waxes with various ratios of Tween 80 and Span 80 or soybean lecithin were formulated to obtain AA-loaded solid lipid nanoparticles (AA-SLN) to improve direct nose to brain transport. Optimal AA-SLN had particle size below 200 nm with uniform size distribution and zeta potential of nearly -30 mV indicating a low risk of particle aggregation. Formulation with rice bran wax, Tween 80, and soybean lecithin (AA-RwS100) showed the highest entrapment efficiency and yield of >98 % while in vitro AA release of AA-SLN was linearly up to 48 h For ex vivo permeation, confocal laser scanning microscopy (CLSM) and histopathological studies on porcine olfactory mucosa (OM) and respiratory mucosa (RM), AA-SLN showed significantly higher permeation across OM than RM (p < 0.05) up to 6 h and AA-RwS100 also showed the highest amount of drug permeated as confirmed by CLSM results. Although AA-SLN showed non-significantly lower permeation than AA solution (AA-SOL) (p > 0.05), no epithelial and mucosal structure damages were observed in OM treated with AA-RwS100 and RM treated with all AA-SLNs indicating safety for nasal administration while AA-SOL showed significant damage to both OM and RM. In addition, in vivo brain distribution study by fluorescence imaging using Rhodamine (R6g) showed higher brain distribution after intranasal administration of R6g-loaded solid lipid nanoparticles (R6g-SLN) than R6g solution (R6g-SOL) and intravenous administration of R6g-SLN, and R6g-RwS100 also showed the highest brain accumulation at 8 h post administration.
期刊介绍:
The journal publishes research articles, review articles and scientific commentaries on all aspects of the pharmaceutical sciences with emphasis on conceptual novelty and scientific quality. The Editors welcome articles in this multidisciplinary field, with a focus on topics relevant for drug discovery and development.
More specifically, the Journal publishes reports on medicinal chemistry, pharmacology, drug absorption and metabolism, pharmacokinetics and pharmacodynamics, pharmaceutical and biomedical analysis, drug delivery (including gene delivery), drug targeting, pharmaceutical technology, pharmaceutical biotechnology and clinical drug evaluation. The journal will typically not give priority to manuscripts focusing primarily on organic synthesis, natural products, adaptation of analytical approaches, or discussions pertaining to drug policy making.
Scientific commentaries and review articles are generally by invitation only or by consent of the Editors. Proceedings of scientific meetings may be published as special issues or supplements to the Journal.