解锁 ETF 价格预测:探索基于统计依赖性的图表与 xAI 技术之间的相互联系

IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Polymer Materials Pub Date : 2024-10-01 DOI:10.1016/j.knosys.2024.112567
Insu Choi, Woo Chang Kim
{"title":"解锁 ETF 价格预测:探索基于统计依赖性的图表与 xAI 技术之间的相互联系","authors":"Insu Choi,&nbsp;Woo Chang Kim","doi":"10.1016/j.knosys.2024.112567","DOIUrl":null,"url":null,"abstract":"<div><div>In the complex landscape of financial markets, accurately predicting Exchange-Traded Fund (ETF) price movements requires advanced methodologies. This research introduces a practical approach that integrates network analysis with graph embeddings, specifically utilizing Node2Vec, to enhance financial prediction models' performance and interpretability. By representing the intricate relationships within financial markets in a lower-dimensional space, we improve the efficiency of AI-driven predictions. A key component of our method is applying the SHAP Explainable AI (xAI) framework, which helps interpret our tree-based models' decision-making process. Using six different tree-based models, our approach delivers accurate predictions while maintaining transparency in model interpretation. This combination of graph embeddings and explainability tools enables stakeholders to understand better the factors influencing financial market behavior, improving decision-making based on AI models.</div></div>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking ETF price forecasting: Exploring the interconnections with statistical dependence-based graphs and xAI techniques\",\"authors\":\"Insu Choi,&nbsp;Woo Chang Kim\",\"doi\":\"10.1016/j.knosys.2024.112567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the complex landscape of financial markets, accurately predicting Exchange-Traded Fund (ETF) price movements requires advanced methodologies. This research introduces a practical approach that integrates network analysis with graph embeddings, specifically utilizing Node2Vec, to enhance financial prediction models' performance and interpretability. By representing the intricate relationships within financial markets in a lower-dimensional space, we improve the efficiency of AI-driven predictions. A key component of our method is applying the SHAP Explainable AI (xAI) framework, which helps interpret our tree-based models' decision-making process. Using six different tree-based models, our approach delivers accurate predictions while maintaining transparency in model interpretation. This combination of graph embeddings and explainability tools enables stakeholders to understand better the factors influencing financial market behavior, improving decision-making based on AI models.</div></div>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705124012012\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124012012","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在复杂的金融市场环境中,准确预测交易所交易基金(ETF)的价格走势需要先进的方法。本研究介绍了一种将网络分析与图嵌入相结合的实用方法,特别是利用 Node2Vec 来提高金融预测模型的性能和可解释性。通过在低维空间中表示金融市场内错综复杂的关系,我们提高了人工智能驱动预测的效率。我们方法的一个关键组成部分是应用 SHAP 可解释人工智能(xAI)框架,该框架有助于解释我们基于树的模型的决策过程。通过使用六种不同的树状模型,我们的方法既能提供准确的预测,又能保持模型解释的透明度。图嵌入和可解释性工具的结合使利益相关者能够更好地理解影响金融市场行为的因素,从而改进基于人工智能模型的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unlocking ETF price forecasting: Exploring the interconnections with statistical dependence-based graphs and xAI techniques
In the complex landscape of financial markets, accurately predicting Exchange-Traded Fund (ETF) price movements requires advanced methodologies. This research introduces a practical approach that integrates network analysis with graph embeddings, specifically utilizing Node2Vec, to enhance financial prediction models' performance and interpretability. By representing the intricate relationships within financial markets in a lower-dimensional space, we improve the efficiency of AI-driven predictions. A key component of our method is applying the SHAP Explainable AI (xAI) framework, which helps interpret our tree-based models' decision-making process. Using six different tree-based models, our approach delivers accurate predictions while maintaining transparency in model interpretation. This combination of graph embeddings and explainability tools enables stakeholders to understand better the factors influencing financial market behavior, improving decision-making based on AI models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
期刊最新文献
"Lupus Myelitis" Revisited: A Retrospective Single-Center Study of Myelitis Associated With Rheumatologic Disease. Missing Full Disclosures. Clinical and Radiographic Improvement Following Steroid Therapy in Subacute Post-Traumatic Ascending Myelopathy. Lumipulse-Measured Cerebrospinal Fluid Biomarkers for the Early Detection of Alzheimer Disease. Teaching NeuroImage: Use of Arterial Spin Labeling to Differentiate Ictal Phenomenon From Tumor Progression in Grade 3 Astrocytoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1