{"title":"玻璃粉对减轻隧道废石渣在混凝土中的碱-硅反应的影响","authors":"","doi":"10.1016/j.jobe.2024.111024","DOIUrl":null,"url":null,"abstract":"<div><div>Alkali-silica reaction (ASR) poses a critical damage to concrete structures, which will lead to a serious reduction for the service life of concrete. This study investigated the mitigation of ASR using glass powder (GP) through accelerated mortar bar tests (AMBT), with fly ash (FA) and ground granulated blast-furnace slag (GGBS) setting as control groups, and the replacement ratio of GP, FA and GGBS is 0, 5 %, 10 %, 20 %, 30 % and 40 % respectively. The results reveal that both FA and GGBS can mitigate the possibility of ASR: GGBS can significantly mitigate ASR only when its content reaches up to 40 % and FA effectively suppressed ASR with a dosage of 20 %. For the GP, particles larger than 75 μm will increase the risk of ASR, and as evidenced by the clear presence of ASR-gel and cracks in the mortar bars observed. Conversely, GP with particle sizes smaller than 75 μm effectively mitigated ASR, achieving significant suppression at a content of 20 %. The possible mitigation mechanism of GP could be attributed to the pozzolanic reaction between the GP and the alkali in the concrete, which reduces the alkali in the cement. This work might offer some reference to ASR risk control in concrete.</div></div>","PeriodicalId":15064,"journal":{"name":"Journal of building engineering","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of glass powder on alkali-silica reaction mitigation for tunnel waste rock slag in concrete\",\"authors\":\"\",\"doi\":\"10.1016/j.jobe.2024.111024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Alkali-silica reaction (ASR) poses a critical damage to concrete structures, which will lead to a serious reduction for the service life of concrete. This study investigated the mitigation of ASR using glass powder (GP) through accelerated mortar bar tests (AMBT), with fly ash (FA) and ground granulated blast-furnace slag (GGBS) setting as control groups, and the replacement ratio of GP, FA and GGBS is 0, 5 %, 10 %, 20 %, 30 % and 40 % respectively. The results reveal that both FA and GGBS can mitigate the possibility of ASR: GGBS can significantly mitigate ASR only when its content reaches up to 40 % and FA effectively suppressed ASR with a dosage of 20 %. For the GP, particles larger than 75 μm will increase the risk of ASR, and as evidenced by the clear presence of ASR-gel and cracks in the mortar bars observed. Conversely, GP with particle sizes smaller than 75 μm effectively mitigated ASR, achieving significant suppression at a content of 20 %. The possible mitigation mechanism of GP could be attributed to the pozzolanic reaction between the GP and the alkali in the concrete, which reduces the alkali in the cement. This work might offer some reference to ASR risk control in concrete.</div></div>\",\"PeriodicalId\":15064,\"journal\":{\"name\":\"Journal of building engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of building engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352710224025920\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of building engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352710224025920","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
碱硅反应(ASR)会对混凝土结构造成严重破坏,导致混凝土的使用寿命严重缩短。本研究通过加速砂浆棒试验(AMBT),以粉煤灰(FA)和磨细高炉矿渣(GGBS)为对照组,研究了使用玻璃粉(GP)缓解 ASR 的情况,GP、FA 和 GGBS 的替代率分别为 0%、5%、10%、20%、30% 和 40%。结果表明,FA 和 GGBS 都能减轻 ASR 的可能性:GGBS 只有在含量达到 40% 时才能显著减轻 ASR,而 FA 在用量为 20% 时能有效抑制 ASR。对于 GP 而言,大于 75 μm 的颗粒会增加 ASR 的风险,从观察到的砂浆条中明显存在 ASR 凝胶和裂缝就可以看出这一点。相反,粒径小于 75 μm 的 GP 可有效缓解 ASR,在含量为 20% 时可显著抑制 ASR。GP 的可能缓解机制可归因于 GP 与混凝土中的碱之间的胶凝反应,从而减少了水泥中的碱。这项工作可为混凝土中的 ASR 风险控制提供一些参考。
Effect of glass powder on alkali-silica reaction mitigation for tunnel waste rock slag in concrete
Alkali-silica reaction (ASR) poses a critical damage to concrete structures, which will lead to a serious reduction for the service life of concrete. This study investigated the mitigation of ASR using glass powder (GP) through accelerated mortar bar tests (AMBT), with fly ash (FA) and ground granulated blast-furnace slag (GGBS) setting as control groups, and the replacement ratio of GP, FA and GGBS is 0, 5 %, 10 %, 20 %, 30 % and 40 % respectively. The results reveal that both FA and GGBS can mitigate the possibility of ASR: GGBS can significantly mitigate ASR only when its content reaches up to 40 % and FA effectively suppressed ASR with a dosage of 20 %. For the GP, particles larger than 75 μm will increase the risk of ASR, and as evidenced by the clear presence of ASR-gel and cracks in the mortar bars observed. Conversely, GP with particle sizes smaller than 75 μm effectively mitigated ASR, achieving significant suppression at a content of 20 %. The possible mitigation mechanism of GP could be attributed to the pozzolanic reaction between the GP and the alkali in the concrete, which reduces the alkali in the cement. This work might offer some reference to ASR risk control in concrete.
期刊介绍:
The Journal of Building Engineering is an interdisciplinary journal that covers all aspects of science and technology concerned with the whole life cycle of the built environment; from the design phase through to construction, operation, performance, maintenance and its deterioration.