Qunjie Zhang , Jun Zhang , Junnan Liu , Zheting Jia , Ziqing Chen
{"title":"晶体塑性驱动的 IN718 缺口疲劳行为评估","authors":"Qunjie Zhang , Jun Zhang , Junnan Liu , Zheting Jia , Ziqing Chen","doi":"10.1016/j.engfracmech.2024.110554","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this study was to establish a method for evaluating notch fatigue behavior through crystal plasticity finite element (CPFE) simulations based on the actual microstructure of the nickel-based alloy Inconel 718 (IN718). Initially, the equivalent plastic strain, <em>ε<sub>eps</sub></em>, which reflects the comprehensive slip at the grain scale, was employed to analyze the fatigue crack initiation mechanism of IN718, revealing that twinning and triple junctions of grain boundaries were high-risk locations for fatigue crack initiation. Next, fatigue simulations were performed on notched specimens using the CPFE model, with a material-level CPFE model particularly employed at the notch root. The increment of <em>ε<sub>eps</sub></em>, Δ<em>ε<sub>eps</sub></em>, in a stable cycle was used as the fatigue damage control parameter and correlated with the fatigue life, <em>N<sub>f</sub></em>, revealing that the Δ<em>ε<sub>eps</sub></em>-<em>N<sub>f</sub></em> relationship at material-level satisfied the form of the Mason-Coffin model. Finally, fatigue life prediction of IN718 notched specimens was carried out based on the Δ<em>ε<sub>eps</sub></em>-<em>N<sub>f</sub></em> relationship, with the predicted results falling within the 2-fold scatter band, demonstrating good prediction accuracy.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":"311 ","pages":"Article 110554"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystal plasticity-driven evaluation of notch fatigue behavior in IN718\",\"authors\":\"Qunjie Zhang , Jun Zhang , Junnan Liu , Zheting Jia , Ziqing Chen\",\"doi\":\"10.1016/j.engfracmech.2024.110554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The aim of this study was to establish a method for evaluating notch fatigue behavior through crystal plasticity finite element (CPFE) simulations based on the actual microstructure of the nickel-based alloy Inconel 718 (IN718). Initially, the equivalent plastic strain, <em>ε<sub>eps</sub></em>, which reflects the comprehensive slip at the grain scale, was employed to analyze the fatigue crack initiation mechanism of IN718, revealing that twinning and triple junctions of grain boundaries were high-risk locations for fatigue crack initiation. Next, fatigue simulations were performed on notched specimens using the CPFE model, with a material-level CPFE model particularly employed at the notch root. The increment of <em>ε<sub>eps</sub></em>, Δ<em>ε<sub>eps</sub></em>, in a stable cycle was used as the fatigue damage control parameter and correlated with the fatigue life, <em>N<sub>f</sub></em>, revealing that the Δ<em>ε<sub>eps</sub></em>-<em>N<sub>f</sub></em> relationship at material-level satisfied the form of the Mason-Coffin model. Finally, fatigue life prediction of IN718 notched specimens was carried out based on the Δ<em>ε<sub>eps</sub></em>-<em>N<sub>f</sub></em> relationship, with the predicted results falling within the 2-fold scatter band, demonstrating good prediction accuracy.</div></div>\",\"PeriodicalId\":11576,\"journal\":{\"name\":\"Engineering Fracture Mechanics\",\"volume\":\"311 \",\"pages\":\"Article 110554\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Fracture Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013794424007173\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794424007173","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Crystal plasticity-driven evaluation of notch fatigue behavior in IN718
The aim of this study was to establish a method for evaluating notch fatigue behavior through crystal plasticity finite element (CPFE) simulations based on the actual microstructure of the nickel-based alloy Inconel 718 (IN718). Initially, the equivalent plastic strain, εeps, which reflects the comprehensive slip at the grain scale, was employed to analyze the fatigue crack initiation mechanism of IN718, revealing that twinning and triple junctions of grain boundaries were high-risk locations for fatigue crack initiation. Next, fatigue simulations were performed on notched specimens using the CPFE model, with a material-level CPFE model particularly employed at the notch root. The increment of εeps, Δεeps, in a stable cycle was used as the fatigue damage control parameter and correlated with the fatigue life, Nf, revealing that the Δεeps-Nf relationship at material-level satisfied the form of the Mason-Coffin model. Finally, fatigue life prediction of IN718 notched specimens was carried out based on the Δεeps-Nf relationship, with the predicted results falling within the 2-fold scatter band, demonstrating good prediction accuracy.
期刊介绍:
EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.