Yan Wang
(, ), Jingjing Zhang
(, ), Yongfen Chai
(, ), Haojie Huang
(, ), Hongyou Liu
(, )
{"title":"小型风力涡轮机在含沙气流中的空气动力性能","authors":"Yan Wang \n (, ), Jingjing Zhang \n (, ), Yongfen Chai \n (, ), Haojie Huang \n (, ), Hongyou Liu \n (, )","doi":"10.1007/s10409-024-24151-x","DOIUrl":null,"url":null,"abstract":"<div><p>Within the context of global energy transitions, many wind turbines have been installed in desert and Gobi regions. Nevertheless, the impact of turbulence characteristics in actual sand-laden atmospheric flows on the aerodynamic performance of wind turbines has not been evaluated. The current study employs the high-quality wind velocity data measured in the Qingtu Lake Observation Array station of Min Qin to reveal the effects of turbulence characteristics in sand-laden atmospheric flows on the power and loads of a small wind turbine. The results demonstrate that turbulent coherent structures under sand-laden conditions occur more frequently and with shorter durations than that under the unladen conditions, leading to frequent and large fluctuations of wind turbine loads, specifically, the power, thrust, and blade root flapwise moment increased by 238%, 167%, and 194%, respectively. The predictions by applying the extreme turbulence model suggested that the maximum extreme thrust, blade root flapwise moment, and blade root edgewise moment of wind turbine under sand-laden conditions are 23%, 19%, and 7% higher than that under unladen conditions. This study is expected to provide a basic supply for wind turbine design and siting decisions in sand-laden environment.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerodynamic performance of small wind turbines in sand-laden atmospheric flows\",\"authors\":\"Yan Wang \\n (, ), Jingjing Zhang \\n (, ), Yongfen Chai \\n (, ), Haojie Huang \\n (, ), Hongyou Liu \\n (, )\",\"doi\":\"10.1007/s10409-024-24151-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Within the context of global energy transitions, many wind turbines have been installed in desert and Gobi regions. Nevertheless, the impact of turbulence characteristics in actual sand-laden atmospheric flows on the aerodynamic performance of wind turbines has not been evaluated. The current study employs the high-quality wind velocity data measured in the Qingtu Lake Observation Array station of Min Qin to reveal the effects of turbulence characteristics in sand-laden atmospheric flows on the power and loads of a small wind turbine. The results demonstrate that turbulent coherent structures under sand-laden conditions occur more frequently and with shorter durations than that under the unladen conditions, leading to frequent and large fluctuations of wind turbine loads, specifically, the power, thrust, and blade root flapwise moment increased by 238%, 167%, and 194%, respectively. The predictions by applying the extreme turbulence model suggested that the maximum extreme thrust, blade root flapwise moment, and blade root edgewise moment of wind turbine under sand-laden conditions are 23%, 19%, and 7% higher than that under unladen conditions. This study is expected to provide a basic supply for wind turbine design and siting decisions in sand-laden environment.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":\"41 5\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-024-24151-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24151-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Aerodynamic performance of small wind turbines in sand-laden atmospheric flows
Within the context of global energy transitions, many wind turbines have been installed in desert and Gobi regions. Nevertheless, the impact of turbulence characteristics in actual sand-laden atmospheric flows on the aerodynamic performance of wind turbines has not been evaluated. The current study employs the high-quality wind velocity data measured in the Qingtu Lake Observation Array station of Min Qin to reveal the effects of turbulence characteristics in sand-laden atmospheric flows on the power and loads of a small wind turbine. The results demonstrate that turbulent coherent structures under sand-laden conditions occur more frequently and with shorter durations than that under the unladen conditions, leading to frequent and large fluctuations of wind turbine loads, specifically, the power, thrust, and blade root flapwise moment increased by 238%, 167%, and 194%, respectively. The predictions by applying the extreme turbulence model suggested that the maximum extreme thrust, blade root flapwise moment, and blade root edgewise moment of wind turbine under sand-laden conditions are 23%, 19%, and 7% higher than that under unladen conditions. This study is expected to provide a basic supply for wind turbine design and siting decisions in sand-laden environment.
期刊介绍:
Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences.
Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences.
In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest.
Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics