{"title":"基于空间分布的样本选择方法的瞬态稳定性评估模型","authors":"Yongbin Li, Yiting Wang, Jian Li, Huanbei Zhao, Huaiyuan Wang, Litao Hu","doi":"10.1155/2024/5231569","DOIUrl":null,"url":null,"abstract":"<div>\n <p>With the phasor measurement units (PMUs) being widely utilized in power systems, a large amount of data can be stored. If transient stability assessment (TSA) method based on the deep learning model is trained by this dataset, it requires high computation cost. Furthermore, the fact that unstable cases rarely occur would lead to an imbalanced dataset. Thus, power system transient stability status prediction has the bias problem caused by the imbalance of sample size and class importance. Faced with such a problem, a TSA model based on the sample selection method is proposed in this paper. Sample selection aims to optimize the training set to speed up the training process while improving the preference of the TSA model. The typical samples which can accurately express the spatial distribution of the raw dataset are selected by the proposed method. Primarily, based on the location of training samples in the feature space, the border samples are selected by trained support vector machine (SVM), and the edge samples are selected by the assistance of the approximated tangent hyperplane of a class surface. Then, the selected samples are input to stacked sparse autoencoder (SSAE) as the final classifier. Simulation results in the IEEE 39-bus system and the realistic regional power system of Eastern China show the high performance of the proposed method.</p>\n </div>","PeriodicalId":50653,"journal":{"name":"Complexity","volume":"2024 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5231569","citationCount":"0","resultStr":"{\"title\":\"Transient Stability Assessment Model With Sample Selection Method Based on Spatial Distribution\",\"authors\":\"Yongbin Li, Yiting Wang, Jian Li, Huanbei Zhao, Huaiyuan Wang, Litao Hu\",\"doi\":\"10.1155/2024/5231569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>With the phasor measurement units (PMUs) being widely utilized in power systems, a large amount of data can be stored. If transient stability assessment (TSA) method based on the deep learning model is trained by this dataset, it requires high computation cost. Furthermore, the fact that unstable cases rarely occur would lead to an imbalanced dataset. Thus, power system transient stability status prediction has the bias problem caused by the imbalance of sample size and class importance. Faced with such a problem, a TSA model based on the sample selection method is proposed in this paper. Sample selection aims to optimize the training set to speed up the training process while improving the preference of the TSA model. The typical samples which can accurately express the spatial distribution of the raw dataset are selected by the proposed method. Primarily, based on the location of training samples in the feature space, the border samples are selected by trained support vector machine (SVM), and the edge samples are selected by the assistance of the approximated tangent hyperplane of a class surface. Then, the selected samples are input to stacked sparse autoencoder (SSAE) as the final classifier. Simulation results in the IEEE 39-bus system and the realistic regional power system of Eastern China show the high performance of the proposed method.</p>\\n </div>\",\"PeriodicalId\":50653,\"journal\":{\"name\":\"Complexity\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5231569\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complexity\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/5231569\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complexity","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5231569","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Transient Stability Assessment Model With Sample Selection Method Based on Spatial Distribution
With the phasor measurement units (PMUs) being widely utilized in power systems, a large amount of data can be stored. If transient stability assessment (TSA) method based on the deep learning model is trained by this dataset, it requires high computation cost. Furthermore, the fact that unstable cases rarely occur would lead to an imbalanced dataset. Thus, power system transient stability status prediction has the bias problem caused by the imbalance of sample size and class importance. Faced with such a problem, a TSA model based on the sample selection method is proposed in this paper. Sample selection aims to optimize the training set to speed up the training process while improving the preference of the TSA model. The typical samples which can accurately express the spatial distribution of the raw dataset are selected by the proposed method. Primarily, based on the location of training samples in the feature space, the border samples are selected by trained support vector machine (SVM), and the edge samples are selected by the assistance of the approximated tangent hyperplane of a class surface. Then, the selected samples are input to stacked sparse autoencoder (SSAE) as the final classifier. Simulation results in the IEEE 39-bus system and the realistic regional power system of Eastern China show the high performance of the proposed method.
期刊介绍:
Complexity is a cross-disciplinary journal focusing on the rapidly expanding science of complex adaptive systems. The purpose of the journal is to advance the science of complexity. Articles may deal with such methodological themes as chaos, genetic algorithms, cellular automata, neural networks, and evolutionary game theory. Papers treating applications in any area of natural science or human endeavor are welcome, and especially encouraged are papers integrating conceptual themes and applications that cross traditional disciplinary boundaries. Complexity is not meant to serve as a forum for speculation and vague analogies between words like “chaos,” “self-organization,” and “emergence” that are often used in completely different ways in science and in daily life.