{"title":"生理学中的昼夜节律调节:对疾病和治疗的影响","authors":"Leonardo Vinicius Monteiro de Assis, Achim Kramer","doi":"10.1101/gad.352180.124","DOIUrl":null,"url":null,"abstract":"Time plays a crucial role in the regulation of physiological processes. Without a temporal control system, animals would be unprepared for cyclic environmental changes, negatively impacting their survival. Experimental studies have demonstrated the essential role of the circadian system in the temporal coordination of physiological processes. Translating these findings to humans has been challenging. Increasing evidence suggests that modern lifestyle factors such as diet, sedentarism, light exposure, and social jet lag can stress the human circadian system, contributing to misalignment; i.e., loss of phase coherence across tissues. An increasing body of evidence supports the negative impact of circadian disruption on several human health parameters. This review aims to provide a comprehensive overview of how circadian disruption influences various physiological processes, its long-term health consequences, and its association with various diseases. To illustrate the relevant consequences of circadian disruption, we focused on describing the many physiological consequences faced by shift workers, a population known to experience high levels of circadian disruption. We also discuss the emerging field of circadian medicine, its founding principles, and its potential impact on human health.","PeriodicalId":12591,"journal":{"name":"Genes & development","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circadian de(regulation) in physiology: implications for disease and treatment\",\"authors\":\"Leonardo Vinicius Monteiro de Assis, Achim Kramer\",\"doi\":\"10.1101/gad.352180.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time plays a crucial role in the regulation of physiological processes. Without a temporal control system, animals would be unprepared for cyclic environmental changes, negatively impacting their survival. Experimental studies have demonstrated the essential role of the circadian system in the temporal coordination of physiological processes. Translating these findings to humans has been challenging. Increasing evidence suggests that modern lifestyle factors such as diet, sedentarism, light exposure, and social jet lag can stress the human circadian system, contributing to misalignment; i.e., loss of phase coherence across tissues. An increasing body of evidence supports the negative impact of circadian disruption on several human health parameters. This review aims to provide a comprehensive overview of how circadian disruption influences various physiological processes, its long-term health consequences, and its association with various diseases. To illustrate the relevant consequences of circadian disruption, we focused on describing the many physiological consequences faced by shift workers, a population known to experience high levels of circadian disruption. We also discuss the emerging field of circadian medicine, its founding principles, and its potential impact on human health.\",\"PeriodicalId\":12591,\"journal\":{\"name\":\"Genes & development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes & development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/gad.352180.124\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gad.352180.124","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Circadian de(regulation) in physiology: implications for disease and treatment
Time plays a crucial role in the regulation of physiological processes. Without a temporal control system, animals would be unprepared for cyclic environmental changes, negatively impacting their survival. Experimental studies have demonstrated the essential role of the circadian system in the temporal coordination of physiological processes. Translating these findings to humans has been challenging. Increasing evidence suggests that modern lifestyle factors such as diet, sedentarism, light exposure, and social jet lag can stress the human circadian system, contributing to misalignment; i.e., loss of phase coherence across tissues. An increasing body of evidence supports the negative impact of circadian disruption on several human health parameters. This review aims to provide a comprehensive overview of how circadian disruption influences various physiological processes, its long-term health consequences, and its association with various diseases. To illustrate the relevant consequences of circadian disruption, we focused on describing the many physiological consequences faced by shift workers, a population known to experience high levels of circadian disruption. We also discuss the emerging field of circadian medicine, its founding principles, and its potential impact on human health.
期刊介绍:
Genes & Development is a research journal published in association with The Genetics Society. It publishes high-quality research papers in the areas of molecular biology, molecular genetics, and related fields. The journal features various research formats including Research papers, short Research Communications, and Resource/Methodology papers.
Genes & Development has gained recognition and is considered as one of the Top Five Research Journals in the field of Molecular Biology and Genetics. It has an impressive Impact Factor of 12.89. The journal is ranked #2 among Developmental Biology research journals, #5 in Genetics and Heredity, and is among the Top 20 in Cell Biology (according to ISI Journal Citation Reports®, 2021).