Sidonie Laviéville, Cédric Totée, Pascale Guiffrey, Sylvain Caillol, Camille Bakkali-Hassani, Vincent Ladmiral, Eric Leclerc
{"title":"作为共价适应性网络化学平台的三氟甲基化 N,S-乙缩醛:高透明度材料的快速硫醇交换和强水稳性","authors":"Sidonie Laviéville, Cédric Totée, Pascale Guiffrey, Sylvain Caillol, Camille Bakkali-Hassani, Vincent Ladmiral, Eric Leclerc","doi":"10.1021/acs.macromol.4c01359","DOIUrl":null,"url":null,"abstract":"This work presents the synthesis and characterization of a highly transparent and colorless covalent adaptable network (CAN) exhibiting short relaxation times (30 s at 150 °C) and limited creep at 100 °C. Based on <i>N,S</i>-acetal functions, strongly stabilized by a trifluoromethyl group, this network, however, retains the ability to undergo fast thiol exchanges. The present article describes a detailed monitoring of the cross-linking via ATR-FTIR and <sup>19</sup>F HRMAS NMR (high-resolution magic angle spinning NMR), the complete structural characterization of the material via <sup>13</sup>C HRMAS NMR, and the comprehensive study of the rheological properties of this novel <i>N,S</i>-acetal network. This CAN shows hydrolytic stability and higher activation energies (>90 kJ mol<sup>–1</sup>) than its nonfluorinated counterparts. Its reprocessing occurs under relatively mild conditions without the need for a catalyst, and depolymerization can be achieved either with an amine (benzylamine), under acidic conditions (1 M HCl) at room temperature, or with a thiol (1-dodecanethiol) at 100 °C.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"40 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trifluoromethylated N,S-Acetal as a Chemical Platform for Covalent Adaptable Networks: Fast Thiol Exchange and Strong Hydrostability for a Highly Transparent Material\",\"authors\":\"Sidonie Laviéville, Cédric Totée, Pascale Guiffrey, Sylvain Caillol, Camille Bakkali-Hassani, Vincent Ladmiral, Eric Leclerc\",\"doi\":\"10.1021/acs.macromol.4c01359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents the synthesis and characterization of a highly transparent and colorless covalent adaptable network (CAN) exhibiting short relaxation times (30 s at 150 °C) and limited creep at 100 °C. Based on <i>N,S</i>-acetal functions, strongly stabilized by a trifluoromethyl group, this network, however, retains the ability to undergo fast thiol exchanges. The present article describes a detailed monitoring of the cross-linking via ATR-FTIR and <sup>19</sup>F HRMAS NMR (high-resolution magic angle spinning NMR), the complete structural characterization of the material via <sup>13</sup>C HRMAS NMR, and the comprehensive study of the rheological properties of this novel <i>N,S</i>-acetal network. This CAN shows hydrolytic stability and higher activation energies (>90 kJ mol<sup>–1</sup>) than its nonfluorinated counterparts. Its reprocessing occurs under relatively mild conditions without the need for a catalyst, and depolymerization can be achieved either with an amine (benzylamine), under acidic conditions (1 M HCl) at room temperature, or with a thiol (1-dodecanethiol) at 100 °C.\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.macromol.4c01359\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c01359","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
摘要
这项研究合成并表征了一种高度透明、无色的共价适应性网络(CAN),它的弛豫时间很短(150 °C时为30秒),在100 °C时蠕变有限。这种网络以 N,S-缩醛功能为基础,并由一个三氟甲基基团强力稳定,但仍能进行快速的硫醇交换。本文介绍了通过 ATR-FTIR 和 19F HRMAS NMR(高分辨率魔角旋转 NMR)对交联进行的详细监测、通过 13C HRMAS NMR 对材料进行的完整结构表征,以及对这种新型 N,S-缩醛网络的流变特性进行的全面研究。与不含氟的同类产品相比,这种 CAN 具有水解稳定性和更高的活化能(90 kJ mol-1)。它可以在相对温和的条件下进行再加工,无需催化剂,并且可以在室温下用胺(苄胺)、酸性条件(1 M HCl)或在 100 °C 下用硫醇(1-十二烷硫醇)实现解聚。
Trifluoromethylated N,S-Acetal as a Chemical Platform for Covalent Adaptable Networks: Fast Thiol Exchange and Strong Hydrostability for a Highly Transparent Material
This work presents the synthesis and characterization of a highly transparent and colorless covalent adaptable network (CAN) exhibiting short relaxation times (30 s at 150 °C) and limited creep at 100 °C. Based on N,S-acetal functions, strongly stabilized by a trifluoromethyl group, this network, however, retains the ability to undergo fast thiol exchanges. The present article describes a detailed monitoring of the cross-linking via ATR-FTIR and 19F HRMAS NMR (high-resolution magic angle spinning NMR), the complete structural characterization of the material via 13C HRMAS NMR, and the comprehensive study of the rheological properties of this novel N,S-acetal network. This CAN shows hydrolytic stability and higher activation energies (>90 kJ mol–1) than its nonfluorinated counterparts. Its reprocessing occurs under relatively mild conditions without the need for a catalyst, and depolymerization can be achieved either with an amine (benzylamine), under acidic conditions (1 M HCl) at room temperature, or with a thiol (1-dodecanethiol) at 100 °C.
期刊介绍:
Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.