无定形 AlOCl 化合物使纳米晶体氯化锂具有超高离子电导率

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-10-19 DOI:10.1021/jacs.4c06498
Hui Duan, Changhong Wang, Xu-Sheng Zhang, Jiamin Fu, Weihan Li, Jing Wan, Ruizhi Yu, Min Fan, Fucheng Ren, Shuo Wang, Matthew Zheng, Xiaona Li, Jianwen Liang, Rui Wen, Sen Xin, Yu-Guo Guo, Xueliang Sun
{"title":"无定形 AlOCl 化合物使纳米晶体氯化锂具有超高离子电导率","authors":"Hui Duan, Changhong Wang, Xu-Sheng Zhang, Jiamin Fu, Weihan Li, Jing Wan, Ruizhi Yu, Min Fan, Fucheng Ren, Shuo Wang, Matthew Zheng, Xiaona Li, Jianwen Liang, Rui Wen, Sen Xin, Yu-Guo Guo, Xueliang Sun","doi":"10.1021/jacs.4c06498","DOIUrl":null,"url":null,"abstract":"LiCl is a promising solid electrolyte, providing it possesses high ionic conductivity. Numerous efforts have been made to enhance its ionic conductivity through aliovalent doping. However, aliovalent substitution changes the intrinsic structure of LiCl, compromising its cost-effectiveness and electrochemical stability. Here, we report nanocrystalline LiCl embedded in amorphous AlOCl compounds with a heterogeneous structure to enhance its ionic conductivity. Nanocrystallization enlarges the LiCl unit cell, while amorphization facilitates interfacial ion transport. As a result, the amorphous AlOCl-modified LiCl nanocrystal (AlOCl-nanoLiCl) demonstrates a high ionic conductivity of 1.02 mS cm<sup>–1</sup>, which is 5 orders of magnitude higher than that of LiCl. Additionally, it exhibits high oxidative stability, low cost ($19.87 US kg<sup>–1</sup>), and low Young’s modulus (2–3 GPa). When AlOCl-nanoLiCl is coupled with Li-rich cathodes (Li<sub>1.17</sub>Mn<sub>0.55</sub>Ni<sub>0.24</sub>Co<sub>0.05</sub>O<sub>2</sub>, 4.8 V vs Li<sup>+</sup>/Li), all-solid-state batteries exhibit remarkable long-term cycling stability (&gt;1000 cycles). This work presents a novel strategy to enhance the ionic conductivity of alkaline chlorides without compromising their intrinsic advantages.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amorphous AlOCl Compounds Enabling Nanocrystalline LiCl with Abnormally High Ionic Conductivity\",\"authors\":\"Hui Duan, Changhong Wang, Xu-Sheng Zhang, Jiamin Fu, Weihan Li, Jing Wan, Ruizhi Yu, Min Fan, Fucheng Ren, Shuo Wang, Matthew Zheng, Xiaona Li, Jianwen Liang, Rui Wen, Sen Xin, Yu-Guo Guo, Xueliang Sun\",\"doi\":\"10.1021/jacs.4c06498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"LiCl is a promising solid electrolyte, providing it possesses high ionic conductivity. Numerous efforts have been made to enhance its ionic conductivity through aliovalent doping. However, aliovalent substitution changes the intrinsic structure of LiCl, compromising its cost-effectiveness and electrochemical stability. Here, we report nanocrystalline LiCl embedded in amorphous AlOCl compounds with a heterogeneous structure to enhance its ionic conductivity. Nanocrystallization enlarges the LiCl unit cell, while amorphization facilitates interfacial ion transport. As a result, the amorphous AlOCl-modified LiCl nanocrystal (AlOCl-nanoLiCl) demonstrates a high ionic conductivity of 1.02 mS cm<sup>–1</sup>, which is 5 orders of magnitude higher than that of LiCl. Additionally, it exhibits high oxidative stability, low cost ($19.87 US kg<sup>–1</sup>), and low Young’s modulus (2–3 GPa). When AlOCl-nanoLiCl is coupled with Li-rich cathodes (Li<sub>1.17</sub>Mn<sub>0.55</sub>Ni<sub>0.24</sub>Co<sub>0.05</sub>O<sub>2</sub>, 4.8 V vs Li<sup>+</sup>/Li), all-solid-state batteries exhibit remarkable long-term cycling stability (&gt;1000 cycles). This work presents a novel strategy to enhance the ionic conductivity of alkaline chlorides without compromising their intrinsic advantages.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c06498\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c06498","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氯化锂具有很高的离子电导率,是一种很有前途的固体电解质。为了通过掺杂等价物来提高其离子电导率,人们做出了许多努力。然而,别价取代会改变氯化锂的固有结构,影响其成本效益和电化学稳定性。在此,我们报告了嵌入无定形 AlOCl 化合物中的具有异质结构的纳米晶体氯化锂,以增强其离子导电性。纳米结晶扩大了氯化锂单胞,而非晶化则促进了界面离子传输。因此,非晶态 AlOCl 改性氯化锂纳米晶体(AlOCl-nanoLiCl)的离子电导率高达 1.02 mS cm-1,比氯化锂的离子电导率高出 5 个数量级。此外,它还具有高氧化稳定性、低成本(19.87 美元 kg-1)和低杨氏模量(2-3 GPa)。当 AlOCl 纳米氯化锂与富锂阴极(Li1.17Mn0.55Ni0.24Co0.05O2,4.8 V vs Li+/Li)结合使用时,全固态电池表现出显著的长期循环稳定性(1000 次循环)。这项研究提出了一种在不损害碱性氯化物固有优势的情况下增强其离子导电性的新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Amorphous AlOCl Compounds Enabling Nanocrystalline LiCl with Abnormally High Ionic Conductivity
LiCl is a promising solid electrolyte, providing it possesses high ionic conductivity. Numerous efforts have been made to enhance its ionic conductivity through aliovalent doping. However, aliovalent substitution changes the intrinsic structure of LiCl, compromising its cost-effectiveness and electrochemical stability. Here, we report nanocrystalline LiCl embedded in amorphous AlOCl compounds with a heterogeneous structure to enhance its ionic conductivity. Nanocrystallization enlarges the LiCl unit cell, while amorphization facilitates interfacial ion transport. As a result, the amorphous AlOCl-modified LiCl nanocrystal (AlOCl-nanoLiCl) demonstrates a high ionic conductivity of 1.02 mS cm–1, which is 5 orders of magnitude higher than that of LiCl. Additionally, it exhibits high oxidative stability, low cost ($19.87 US kg–1), and low Young’s modulus (2–3 GPa). When AlOCl-nanoLiCl is coupled with Li-rich cathodes (Li1.17Mn0.55Ni0.24Co0.05O2, 4.8 V vs Li+/Li), all-solid-state batteries exhibit remarkable long-term cycling stability (>1000 cycles). This work presents a novel strategy to enhance the ionic conductivity of alkaline chlorides without compromising their intrinsic advantages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Amorphous AlOCl Compounds Enabling Nanocrystalline LiCl with Abnormally High Ionic Conductivity Entropy-Derived Synthesis of the CuPd Sub-1nm Alloy for CO2-to-acetate Electroreduction Cross-Coupling of NHC/CAAC-Based Carbodicarbene: Synthesis of Electron-Deficient Diradicaloids Boosting Energy-Storage in High-Entropy Pb-Free Relaxors Engineered by Local Lattice Distortion Exceptional Field Effect and Negative Differential Conductance in Spiro-Conjugated Single-Molecule Junctions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1