胍盐中的离子配对倾向决定其蛋白质(去)稳定行为

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2024-10-07 DOI:10.1021/acs.jpclett.4c0164610.1021/acs.jpclett.4c01646
Ria Saha, Subhadip Chakraborty, Krishnendu Sinha, Partha Pyne, Sreya Pal, Anjan Barman, Suman Chakrabarty and Rajib Kumar Mitra*, 
{"title":"胍盐中的离子配对倾向决定其蛋白质(去)稳定行为","authors":"Ria Saha,&nbsp;Subhadip Chakraborty,&nbsp;Krishnendu Sinha,&nbsp;Partha Pyne,&nbsp;Sreya Pal,&nbsp;Anjan Barman,&nbsp;Suman Chakrabarty and Rajib Kumar Mitra*,&nbsp;","doi":"10.1021/acs.jpclett.4c0164610.1021/acs.jpclett.4c01646","DOIUrl":null,"url":null,"abstract":"<p >Since the proposition of the Hofmeister series, guanidinium (Gdm) salts hold a special mention in protein science owing to their contrasting effect on protein(s) depending on the counteranion(s). For example, while GdmCl is known to act as a potential protein denaturant, Gdm<sub>2</sub>SO<sub>4</sub> offers minimal effect on protein structure. Despite the fact that theoretical studies reckon the formation of ion-pairing to be responsible for such behavior, experimental validation of this hypothesis is still in sparse. In this study, we combine electrochemical impedance spectroscopy (EIS) and THz spectroscopy to underline the effect of GdmCl and Gdm<sub>2</sub>SO<sub>4</sub> on a model amide molecule <i>N</i>-methylacetamide (NMA). Molecular dynamics (MD) simulation studies predict that Gdm<sub>2</sub>SO<sub>4</sub> forms heteroion pairing in water, which inhibits Gdm<sup>+</sup> ions to approach NMA molecules, while in case of GdmCl, Gdm<sup>+</sup> ions directly interact with NMA. The experimental findings on ion hydration, specifically the detailed analysis of the ion–water rattling mode, which appears in the THz frequency domain, unambiguously endorse this hypothesis. Our study establishes the fact that the propensity of ion-pairing in Gdm salts dictates their (de)stabilization effect on proteins.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ion-Pairing Propensity in Guanidinium Salts Dictates Their Protein (De)stabilization Behavior\",\"authors\":\"Ria Saha,&nbsp;Subhadip Chakraborty,&nbsp;Krishnendu Sinha,&nbsp;Partha Pyne,&nbsp;Sreya Pal,&nbsp;Anjan Barman,&nbsp;Suman Chakrabarty and Rajib Kumar Mitra*,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.4c0164610.1021/acs.jpclett.4c01646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Since the proposition of the Hofmeister series, guanidinium (Gdm) salts hold a special mention in protein science owing to their contrasting effect on protein(s) depending on the counteranion(s). For example, while GdmCl is known to act as a potential protein denaturant, Gdm<sub>2</sub>SO<sub>4</sub> offers minimal effect on protein structure. Despite the fact that theoretical studies reckon the formation of ion-pairing to be responsible for such behavior, experimental validation of this hypothesis is still in sparse. In this study, we combine electrochemical impedance spectroscopy (EIS) and THz spectroscopy to underline the effect of GdmCl and Gdm<sub>2</sub>SO<sub>4</sub> on a model amide molecule <i>N</i>-methylacetamide (NMA). Molecular dynamics (MD) simulation studies predict that Gdm<sub>2</sub>SO<sub>4</sub> forms heteroion pairing in water, which inhibits Gdm<sup>+</sup> ions to approach NMA molecules, while in case of GdmCl, Gdm<sup>+</sup> ions directly interact with NMA. The experimental findings on ion hydration, specifically the detailed analysis of the ion–water rattling mode, which appears in the THz frequency domain, unambiguously endorse this hypothesis. Our study establishes the fact that the propensity of ion-pairing in Gdm salts dictates their (de)stabilization effect on proteins.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.4c01646\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.4c01646","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

自霍夫迈斯特(Hofmeister)系列提出以来,胍盐(Gdm)在蛋白质科学中一直占有特殊地位,因为它们对蛋白质的影响因反阴离子的不同而截然不同。例如,GdmCl 是一种潜在的蛋白质变性剂,而 Gdm2SO4 对蛋白质结构的影响则微乎其微。尽管理论研究认为离子配对的形成是造成这种行为的原因,但对这一假设的实验验证仍然很少。在本研究中,我们结合电化学阻抗光谱(EIS)和太赫兹光谱来强调 GdmCl 和 Gdm2SO4 对模型酰胺分子 N-甲基乙酰胺(NMA)的影响。分子动力学(MD)模拟研究预测,Gdm2SO4 会在水中形成异质离子配对,从而抑制 Gdm+ 离子接近 NMA 分子,而在 GdmCl 的情况下,Gdm+ 离子会直接与 NMA 发生相互作用。关于离子水合的实验结果,特别是对出现在太赫兹频域的离子-水响声模式的详细分析,明确证实了这一假设。我们的研究证实,Gdm 盐的离子配对倾向决定了它们对蛋白质的(去)稳定作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ion-Pairing Propensity in Guanidinium Salts Dictates Their Protein (De)stabilization Behavior

Since the proposition of the Hofmeister series, guanidinium (Gdm) salts hold a special mention in protein science owing to their contrasting effect on protein(s) depending on the counteranion(s). For example, while GdmCl is known to act as a potential protein denaturant, Gdm2SO4 offers minimal effect on protein structure. Despite the fact that theoretical studies reckon the formation of ion-pairing to be responsible for such behavior, experimental validation of this hypothesis is still in sparse. In this study, we combine electrochemical impedance spectroscopy (EIS) and THz spectroscopy to underline the effect of GdmCl and Gdm2SO4 on a model amide molecule N-methylacetamide (NMA). Molecular dynamics (MD) simulation studies predict that Gdm2SO4 forms heteroion pairing in water, which inhibits Gdm+ ions to approach NMA molecules, while in case of GdmCl, Gdm+ ions directly interact with NMA. The experimental findings on ion hydration, specifically the detailed analysis of the ion–water rattling mode, which appears in the THz frequency domain, unambiguously endorse this hypothesis. Our study establishes the fact that the propensity of ion-pairing in Gdm salts dictates their (de)stabilization effect on proteins.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Carrier Generation and Recombination in AC–QLEDs with a Synergistic Capacitance Effect of ZnO/PVDF Heterofunction Layers In Silico Design of a Solution-Gated Graphene Transistor Sensor for the Efficient Detection of Guanine Quadruplexes Bond Dissociation Energy of CO2 with Spectroscopic Accuracy Using State-to-State Resolved Threshold Fragment Yield Spectra. Environment- and Conformation-Induced Frequency Shifts of C-D Vibrational Stark Probes in NAD(P)H Cofactors. Extracting the Heterogeneous 3D Structure of Molecular Films Using Higher Dimensional SFG Microscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1