从精确电子核动力学看分子几何相的出现

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2024-10-10 DOI:10.1021/acs.jpclett.4c0203510.1021/acs.jpclett.4c02035
Rocco Martinazzo*,  and , Irene Burghardt, 
{"title":"从精确电子核动力学看分子几何相的出现","authors":"Rocco Martinazzo*,&nbsp; and ,&nbsp;Irene Burghardt,&nbsp;","doi":"10.1021/acs.jpclett.4c0203510.1021/acs.jpclett.4c02035","DOIUrl":null,"url":null,"abstract":"<p >Geometric phases play a crucial role in diverse fields. In molecules, they appear when a reaction path encircles an intersection between adiabatic potential energy surfaces and the molecular wave function experiences quantum-mechanical interference effects. This intriguing effect, closely resembling the magnetic Aharonov–Bohm effect, crucially relies on the adiabatic description of the dynamics, and it is an open issue whether and how it persists in an exact quantum dynamical framework. Recent works suggest that the molecular geometric phase is an artifact of the adiabatic approximation, thereby challenging the entire concept. Here, building upon a recent investigation (Martinazzo, R.; Burghardt, I. <i>Phys. Rev. Lett.</i> <b>2024</b>, <i>132</i>, 243002), we address this issue using the exact factorization of the total wave function. We introduce instantaneous gauge-invariant phases separately for the electrons and nuclei and use them to monitor the phase difference between the trailing edges of a wavepacket encircling a conical intersection between adiabatic surfaces. The transition from the time-dependent open-path phase differences to the closed-path limit is examined, revealing how the phase differences in the electronic and nuclear subspaces compensate for each other upon path closure. In this way, we unambiguously demonstrate the role of the geometric phase in the interference process and shed light on its persistence beyond the adiabatic approximation.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergence of the Molecular Geometric Phase from Exact Electron–Nuclear Dynamics\",\"authors\":\"Rocco Martinazzo*,&nbsp; and ,&nbsp;Irene Burghardt,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.4c0203510.1021/acs.jpclett.4c02035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Geometric phases play a crucial role in diverse fields. In molecules, they appear when a reaction path encircles an intersection between adiabatic potential energy surfaces and the molecular wave function experiences quantum-mechanical interference effects. This intriguing effect, closely resembling the magnetic Aharonov–Bohm effect, crucially relies on the adiabatic description of the dynamics, and it is an open issue whether and how it persists in an exact quantum dynamical framework. Recent works suggest that the molecular geometric phase is an artifact of the adiabatic approximation, thereby challenging the entire concept. Here, building upon a recent investigation (Martinazzo, R.; Burghardt, I. <i>Phys. Rev. Lett.</i> <b>2024</b>, <i>132</i>, 243002), we address this issue using the exact factorization of the total wave function. We introduce instantaneous gauge-invariant phases separately for the electrons and nuclei and use them to monitor the phase difference between the trailing edges of a wavepacket encircling a conical intersection between adiabatic surfaces. The transition from the time-dependent open-path phase differences to the closed-path limit is examined, revealing how the phase differences in the electronic and nuclear subspaces compensate for each other upon path closure. In this way, we unambiguously demonstrate the role of the geometric phase in the interference process and shed light on its persistence beyond the adiabatic approximation.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.4c02035\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.4c02035","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

几何相位在各个领域都发挥着至关重要的作用。在分子中,当反应路径环绕绝热势能面之间的交叉点,分子波函数经历量子力学干涉效应时,就会出现几何相。这种引人入胜的效应与磁性阿哈诺夫-玻姆效应十分相似,它主要依赖于对动力学的绝热描述,而在精确的量子动力学框架中,它是否以及如何持续存在是一个未决问题。最近的研究表明,分子几何相是绝热近似的产物,从而对整个概念提出了挑战。在此,我们以最近的一项研究(Martinazzo, R.; Burghardt, I. Phys. Rev. Lett. 2024, 132, 243002)为基础,利用总波函数的精确因子化来解决这一问题。我们分别为电子和原子核引入了瞬时量规不变相位,并利用它们来监测环绕绝热表面锥形交点的波包后缘之间的相位差。我们研究了从随时间变化的开放路径相位差到封闭路径极限的转变,揭示了电子子空间和核子空间的相位差如何在路径封闭时相互补偿。通过这种方法,我们明确地证明了几何相位在干涉过程中的作用,并揭示了其在绝热近似之外的持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emergence of the Molecular Geometric Phase from Exact Electron–Nuclear Dynamics

Geometric phases play a crucial role in diverse fields. In molecules, they appear when a reaction path encircles an intersection between adiabatic potential energy surfaces and the molecular wave function experiences quantum-mechanical interference effects. This intriguing effect, closely resembling the magnetic Aharonov–Bohm effect, crucially relies on the adiabatic description of the dynamics, and it is an open issue whether and how it persists in an exact quantum dynamical framework. Recent works suggest that the molecular geometric phase is an artifact of the adiabatic approximation, thereby challenging the entire concept. Here, building upon a recent investigation (Martinazzo, R.; Burghardt, I. Phys. Rev. Lett. 2024, 132, 243002), we address this issue using the exact factorization of the total wave function. We introduce instantaneous gauge-invariant phases separately for the electrons and nuclei and use them to monitor the phase difference between the trailing edges of a wavepacket encircling a conical intersection between adiabatic surfaces. The transition from the time-dependent open-path phase differences to the closed-path limit is examined, revealing how the phase differences in the electronic and nuclear subspaces compensate for each other upon path closure. In this way, we unambiguously demonstrate the role of the geometric phase in the interference process and shed light on its persistence beyond the adiabatic approximation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Bond Dissociation Energy of CO2 with Spectroscopic Accuracy Using State-to-State Resolved Threshold Fragment Yield Spectra. Environment- and Conformation-Induced Frequency Shifts of C-D Vibrational Stark Probes in NAD(P)H Cofactors. Extracting the Heterogeneous 3D Structure of Molecular Films Using Higher Dimensional SFG Microscopy. Rational Control of Maximum EMI/CPL Intensity and Wavelength of Bora[6]helicene via Polarity and Vibronic Effects. When a Twist Makes a Difference: Exploring PCET and ESIPT on a Nonplanar Hydrogen-Bonded Donor-Acceptor System.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1