景观异质性影响农业生态系统中传粉媒介的花粉运输

IF 1.2 3区 农林科学 Q3 ENTOMOLOGY Arthropod-Plant Interactions Pub Date : 2024-08-03 DOI:10.1007/s11829-024-10094-1
H. J. Marrero, J. P. Torretta, P. Baldassini, D. P. Vázquez, D. Medan
{"title":"景观异质性影响农业生态系统中传粉媒介的花粉运输","authors":"H. J. Marrero,&nbsp;J. P. Torretta,&nbsp;P. Baldassini,&nbsp;D. P. Vázquez,&nbsp;D. Medan","doi":"10.1007/s11829-024-10094-1","DOIUrl":null,"url":null,"abstract":"<div><p>Landscape heterogeneity may affect components of biodiversity, including pollinators and the ecosystem function they perform. Landscape heterogeneity may also affect pollinator movement and pollen and gene flow. We assessed how changes in landscape compositional heterogeneity generated by agricultural activities affect the pollen transport service provided by insect pollinators. In eleven agricultural fragments with different landscape heterogeneity, we caught pollinators foraging on flowers and extracted their body pollen loads, discriminating among crop, native, and exotic spontaneous plants. At a local scale, the fragments corresponded to 1-ha plots under agricultural management, or to restored plots without agriculture. The landscape heterogeneity of each fragment was characterized using centered circular areas with different diameters (300, 600, and 1000 m). We then calculated the Shannon Diversity Index as a landscape compositional heterogeneity estimator and using the different landscape patches identified (semi-natural pastures, field crops, woodlands, among others). Through generalized linear mixed models, we found that the amount of pollen transported by individual pollinators was positively related with landscape heterogeneity for all pollen grain categories, but the slope exhibiting a notably sharper incline for crop plant species. In addition, crop pollen load carried by individual pollinator was lower than native and exotic spontaneous pollen, highlighting the importance of these species in agroecosystems. Our findings indicate that increasing landscape heterogeneity can enhance pollen transport, especially from crops and exotic plants. However, to ensure the sustainability of pollination services and agroecosystem functions, it is crucial to protect native plant species and encourage their growth on crop edges, thereby improving agroecosystem conservation.</p></div>","PeriodicalId":8409,"journal":{"name":"Arthropod-Plant Interactions","volume":"18 5","pages":"1075 - 1083"},"PeriodicalIF":1.2000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Landscape heterogeneity affects pollen transport by pollinators in agroecosystems\",\"authors\":\"H. J. Marrero,&nbsp;J. P. Torretta,&nbsp;P. Baldassini,&nbsp;D. P. Vázquez,&nbsp;D. Medan\",\"doi\":\"10.1007/s11829-024-10094-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Landscape heterogeneity may affect components of biodiversity, including pollinators and the ecosystem function they perform. Landscape heterogeneity may also affect pollinator movement and pollen and gene flow. We assessed how changes in landscape compositional heterogeneity generated by agricultural activities affect the pollen transport service provided by insect pollinators. In eleven agricultural fragments with different landscape heterogeneity, we caught pollinators foraging on flowers and extracted their body pollen loads, discriminating among crop, native, and exotic spontaneous plants. At a local scale, the fragments corresponded to 1-ha plots under agricultural management, or to restored plots without agriculture. The landscape heterogeneity of each fragment was characterized using centered circular areas with different diameters (300, 600, and 1000 m). We then calculated the Shannon Diversity Index as a landscape compositional heterogeneity estimator and using the different landscape patches identified (semi-natural pastures, field crops, woodlands, among others). Through generalized linear mixed models, we found that the amount of pollen transported by individual pollinators was positively related with landscape heterogeneity for all pollen grain categories, but the slope exhibiting a notably sharper incline for crop plant species. In addition, crop pollen load carried by individual pollinator was lower than native and exotic spontaneous pollen, highlighting the importance of these species in agroecosystems. Our findings indicate that increasing landscape heterogeneity can enhance pollen transport, especially from crops and exotic plants. However, to ensure the sustainability of pollination services and agroecosystem functions, it is crucial to protect native plant species and encourage their growth on crop edges, thereby improving agroecosystem conservation.</p></div>\",\"PeriodicalId\":8409,\"journal\":{\"name\":\"Arthropod-Plant Interactions\",\"volume\":\"18 5\",\"pages\":\"1075 - 1083\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arthropod-Plant Interactions\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11829-024-10094-1\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arthropod-Plant Interactions","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11829-024-10094-1","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

景观异质性可能会影响生物多样性的组成部分,包括传粉昆虫及其发挥的生态系统功能。景观异质性还可能影响传粉昆虫的移动以及花粉和基因的流动。我们评估了农业活动造成的景观组成异质性变化如何影响昆虫授粉者提供的花粉运输服务。在 11 个具有不同景观异质性的农业片区,我们捕捉了在花朵上觅食的传粉昆虫,提取了它们体内的花粉量,并对作物、本地植物和外来自发植物进行了区分。在局部范围内,这些片区相当于农业管理下的 1 公顷地块,或没有农业管理的恢复地块。我们使用不同直径(300 米、600 米和 1000 米)的中心圆形区域来描述每个片段的景观异质性。然后,我们利用确定的不同景观斑块(半自然牧场、大田作物、林地等)计算香农多样性指数,作为景观组成异质性的估计指标。通过广义线性混合模型,我们发现在所有花粉粒类别中,单个传粉媒介传播的花粉量都与景观异质性呈正相关,但作物种类的斜率明显更高。此外,单个传粉昆虫携带的作物花粉量低于本地和外来自发花粉量,这凸显了这些物种在农业生态系统中的重要性。我们的研究结果表明,增加景观的异质性可以促进花粉的传播,尤其是来自农作物和外来植物的花粉。然而,为了确保授粉服务和农业生态系统功能的可持续性,保护本地植物物种并鼓励它们在作物边缘生长至关重要,从而改善农业生态系统保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Landscape heterogeneity affects pollen transport by pollinators in agroecosystems

Landscape heterogeneity may affect components of biodiversity, including pollinators and the ecosystem function they perform. Landscape heterogeneity may also affect pollinator movement and pollen and gene flow. We assessed how changes in landscape compositional heterogeneity generated by agricultural activities affect the pollen transport service provided by insect pollinators. In eleven agricultural fragments with different landscape heterogeneity, we caught pollinators foraging on flowers and extracted their body pollen loads, discriminating among crop, native, and exotic spontaneous plants. At a local scale, the fragments corresponded to 1-ha plots under agricultural management, or to restored plots without agriculture. The landscape heterogeneity of each fragment was characterized using centered circular areas with different diameters (300, 600, and 1000 m). We then calculated the Shannon Diversity Index as a landscape compositional heterogeneity estimator and using the different landscape patches identified (semi-natural pastures, field crops, woodlands, among others). Through generalized linear mixed models, we found that the amount of pollen transported by individual pollinators was positively related with landscape heterogeneity for all pollen grain categories, but the slope exhibiting a notably sharper incline for crop plant species. In addition, crop pollen load carried by individual pollinator was lower than native and exotic spontaneous pollen, highlighting the importance of these species in agroecosystems. Our findings indicate that increasing landscape heterogeneity can enhance pollen transport, especially from crops and exotic plants. However, to ensure the sustainability of pollination services and agroecosystem functions, it is crucial to protect native plant species and encourage their growth on crop edges, thereby improving agroecosystem conservation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arthropod-Plant Interactions
Arthropod-Plant Interactions 生物-昆虫学
CiteScore
3.00
自引率
6.20%
发文量
58
审稿时长
6 months
期刊介绍: Arthropod-Plant Interactions is dedicated to publishing high quality original papers and reviews with a broad fundamental or applied focus on ecological, biological, and evolutionary aspects of the interactions between insects and other arthropods with plants. Coverage extends to all aspects of such interactions including chemical, biochemical, genetic, and molecular analysis, as well reporting on multitrophic studies, ecophysiology, and mutualism. Arthropod-Plant Interactions encourages the submission of forum papers that challenge prevailing hypotheses. The journal encourages a diversity of opinion by presenting both invited and unsolicited review papers.
期刊最新文献
New evidence that blueberry (Vaccinium spp.) has floral traits that enable pollination at night Pollination of endangered Philodendron cipoense (Araceae): floral scent ensures the attraction of several specialized cyclocephaline beetle species (Melolonthidae, Cyclocephalini) Experimental florivory and its effects on pollinators of Opuntia cantabrigiensis Lynch (Cactaceae) Changes in floral traits and higher reproductive success after management in Cereus jamacaru, a cactus endemic to Brazil and obligatorily cross-pollinated by Sphingids Comparative seasonal plant diversity and leaf foraging pattern of leafcutter bees (Megachilidae: Hymenoptera) in urban, semi-urban and agricultural areas of Eastern India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1