H. J. Marrero, J. P. Torretta, P. Baldassini, D. P. Vázquez, D. Medan
{"title":"景观异质性影响农业生态系统中传粉媒介的花粉运输","authors":"H. J. Marrero, J. P. Torretta, P. Baldassini, D. P. Vázquez, D. Medan","doi":"10.1007/s11829-024-10094-1","DOIUrl":null,"url":null,"abstract":"<div><p>Landscape heterogeneity may affect components of biodiversity, including pollinators and the ecosystem function they perform. Landscape heterogeneity may also affect pollinator movement and pollen and gene flow. We assessed how changes in landscape compositional heterogeneity generated by agricultural activities affect the pollen transport service provided by insect pollinators. In eleven agricultural fragments with different landscape heterogeneity, we caught pollinators foraging on flowers and extracted their body pollen loads, discriminating among crop, native, and exotic spontaneous plants. At a local scale, the fragments corresponded to 1-ha plots under agricultural management, or to restored plots without agriculture. The landscape heterogeneity of each fragment was characterized using centered circular areas with different diameters (300, 600, and 1000 m). We then calculated the Shannon Diversity Index as a landscape compositional heterogeneity estimator and using the different landscape patches identified (semi-natural pastures, field crops, woodlands, among others). Through generalized linear mixed models, we found that the amount of pollen transported by individual pollinators was positively related with landscape heterogeneity for all pollen grain categories, but the slope exhibiting a notably sharper incline for crop plant species. In addition, crop pollen load carried by individual pollinator was lower than native and exotic spontaneous pollen, highlighting the importance of these species in agroecosystems. Our findings indicate that increasing landscape heterogeneity can enhance pollen transport, especially from crops and exotic plants. However, to ensure the sustainability of pollination services and agroecosystem functions, it is crucial to protect native plant species and encourage their growth on crop edges, thereby improving agroecosystem conservation.</p></div>","PeriodicalId":8409,"journal":{"name":"Arthropod-Plant Interactions","volume":"18 5","pages":"1075 - 1083"},"PeriodicalIF":1.2000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Landscape heterogeneity affects pollen transport by pollinators in agroecosystems\",\"authors\":\"H. J. Marrero, J. P. Torretta, P. Baldassini, D. P. Vázquez, D. Medan\",\"doi\":\"10.1007/s11829-024-10094-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Landscape heterogeneity may affect components of biodiversity, including pollinators and the ecosystem function they perform. Landscape heterogeneity may also affect pollinator movement and pollen and gene flow. We assessed how changes in landscape compositional heterogeneity generated by agricultural activities affect the pollen transport service provided by insect pollinators. In eleven agricultural fragments with different landscape heterogeneity, we caught pollinators foraging on flowers and extracted their body pollen loads, discriminating among crop, native, and exotic spontaneous plants. At a local scale, the fragments corresponded to 1-ha plots under agricultural management, or to restored plots without agriculture. The landscape heterogeneity of each fragment was characterized using centered circular areas with different diameters (300, 600, and 1000 m). We then calculated the Shannon Diversity Index as a landscape compositional heterogeneity estimator and using the different landscape patches identified (semi-natural pastures, field crops, woodlands, among others). Through generalized linear mixed models, we found that the amount of pollen transported by individual pollinators was positively related with landscape heterogeneity for all pollen grain categories, but the slope exhibiting a notably sharper incline for crop plant species. In addition, crop pollen load carried by individual pollinator was lower than native and exotic spontaneous pollen, highlighting the importance of these species in agroecosystems. Our findings indicate that increasing landscape heterogeneity can enhance pollen transport, especially from crops and exotic plants. However, to ensure the sustainability of pollination services and agroecosystem functions, it is crucial to protect native plant species and encourage their growth on crop edges, thereby improving agroecosystem conservation.</p></div>\",\"PeriodicalId\":8409,\"journal\":{\"name\":\"Arthropod-Plant Interactions\",\"volume\":\"18 5\",\"pages\":\"1075 - 1083\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arthropod-Plant Interactions\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11829-024-10094-1\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arthropod-Plant Interactions","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11829-024-10094-1","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Landscape heterogeneity affects pollen transport by pollinators in agroecosystems
Landscape heterogeneity may affect components of biodiversity, including pollinators and the ecosystem function they perform. Landscape heterogeneity may also affect pollinator movement and pollen and gene flow. We assessed how changes in landscape compositional heterogeneity generated by agricultural activities affect the pollen transport service provided by insect pollinators. In eleven agricultural fragments with different landscape heterogeneity, we caught pollinators foraging on flowers and extracted their body pollen loads, discriminating among crop, native, and exotic spontaneous plants. At a local scale, the fragments corresponded to 1-ha plots under agricultural management, or to restored plots without agriculture. The landscape heterogeneity of each fragment was characterized using centered circular areas with different diameters (300, 600, and 1000 m). We then calculated the Shannon Diversity Index as a landscape compositional heterogeneity estimator and using the different landscape patches identified (semi-natural pastures, field crops, woodlands, among others). Through generalized linear mixed models, we found that the amount of pollen transported by individual pollinators was positively related with landscape heterogeneity for all pollen grain categories, but the slope exhibiting a notably sharper incline for crop plant species. In addition, crop pollen load carried by individual pollinator was lower than native and exotic spontaneous pollen, highlighting the importance of these species in agroecosystems. Our findings indicate that increasing landscape heterogeneity can enhance pollen transport, especially from crops and exotic plants. However, to ensure the sustainability of pollination services and agroecosystem functions, it is crucial to protect native plant species and encourage their growth on crop edges, thereby improving agroecosystem conservation.
期刊介绍:
Arthropod-Plant Interactions is dedicated to publishing high quality original papers and reviews with a broad fundamental or applied focus on ecological, biological, and evolutionary aspects of the interactions between insects and other arthropods with plants. Coverage extends to all aspects of such interactions including chemical, biochemical, genetic, and molecular analysis, as well reporting on multitrophic studies, ecophysiology, and mutualism.
Arthropod-Plant Interactions encourages the submission of forum papers that challenge prevailing hypotheses. The journal encourages a diversity of opinion by presenting both invited and unsolicited review papers.