通过溶热 P2S5 和层状双氢氧化物构建的用于电催化氧进化的铁掺杂硫化镍 @ 磷酸盐异质纳米片

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2024-10-21 DOI:10.1039/d4ta06350c
Zeyi Wang, Shuling Liu, Chenglong Wang, Dan Ren, Yanling Hu, Yujie Ma, Chao Wang
{"title":"通过溶热 P2S5 和层状双氢氧化物构建的用于电催化氧进化的铁掺杂硫化镍 @ 磷酸盐异质纳米片","authors":"Zeyi Wang, Shuling Liu, Chenglong Wang, Dan Ren, Yanling Hu, Yujie Ma, Chao Wang","doi":"10.1039/d4ta06350c","DOIUrl":null,"url":null,"abstract":"The design of efficient and active electrocatalysts for oxygen evolution reaction (OER) is crucial for renewable energy generation. Here, crystalline iron-doped nickel sulfide core, amorphous iron-doped nickel phosphate shell heterostructured nanosheets grown on nickel foam (Ni0.9Fe0.1S@NiFe(PO4)x/NF) are prepared by solvothermal reaction of nickel iron layered double hydroxides on NF (NiFe-LDH/NF) with P2S5. The heterogeneous interface induces the electronic interaction between the Ni0.9Fe0.1S and NiFe(PO4)x phases, that is beneficial for OER. The electrode exhibits excellent OER performance, requiring only a low overpotential of 208 mV and 246 mV at current densities of 10 mA cm−2 and 100 mA cm−2, respectively, and a low Tafel slope of 38.75 mV dec−1 in 1 M KOH. The OER mechanistic pathways of Ni0.9Fe0.1S@NiFe(PO4)x/NF and NiFe-LDH/NF both involve decoupled electron and proton transfer processes, and the contribution of lattice oxygen oxidation mechanism (LOM) is higher for Ni0.9Fe0.1S@NiFe(PO4)x/NF. The increase in the acidity of Ni sites leads to the enhanced participation of LOM for Ni0.9Fe0.1S@NiFe(PO4)x/NF. Additionally, the electrode also shows high long-term durability (150 h), with the transition of surface metal sulfides and phosphates to hydroxide and (oxy) hydroxide observed. This study provides a new idea for the development and design of heterogeneous oxygen evolution electrocatalytic materials.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iron-doped nickel sulfide @ phosphate heterostructures nanosheets constructed by solvothermal P2S5 and layered double hydroxides for electrocatalytic oxygen evolution\",\"authors\":\"Zeyi Wang, Shuling Liu, Chenglong Wang, Dan Ren, Yanling Hu, Yujie Ma, Chao Wang\",\"doi\":\"10.1039/d4ta06350c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of efficient and active electrocatalysts for oxygen evolution reaction (OER) is crucial for renewable energy generation. Here, crystalline iron-doped nickel sulfide core, amorphous iron-doped nickel phosphate shell heterostructured nanosheets grown on nickel foam (Ni0.9Fe0.1S@NiFe(PO4)x/NF) are prepared by solvothermal reaction of nickel iron layered double hydroxides on NF (NiFe-LDH/NF) with P2S5. The heterogeneous interface induces the electronic interaction between the Ni0.9Fe0.1S and NiFe(PO4)x phases, that is beneficial for OER. The electrode exhibits excellent OER performance, requiring only a low overpotential of 208 mV and 246 mV at current densities of 10 mA cm−2 and 100 mA cm−2, respectively, and a low Tafel slope of 38.75 mV dec−1 in 1 M KOH. The OER mechanistic pathways of Ni0.9Fe0.1S@NiFe(PO4)x/NF and NiFe-LDH/NF both involve decoupled electron and proton transfer processes, and the contribution of lattice oxygen oxidation mechanism (LOM) is higher for Ni0.9Fe0.1S@NiFe(PO4)x/NF. The increase in the acidity of Ni sites leads to the enhanced participation of LOM for Ni0.9Fe0.1S@NiFe(PO4)x/NF. Additionally, the electrode also shows high long-term durability (150 h), with the transition of surface metal sulfides and phosphates to hydroxide and (oxy) hydroxide observed. This study provides a new idea for the development and design of heterogeneous oxygen evolution electrocatalytic materials.\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ta06350c\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta06350c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

设计用于氧进化反应(OER)的高效活性电催化剂对于可再生能源的生产至关重要。在此,通过镍铁层状双氢氧化物(NiFe-LDH/NF)与 P2S5 的溶热反应,制备了生长在泡沫镍(Ni0.9Fe0.1S@NiFe(PO4)x/NF)上的结晶掺铁硫化镍核、无定形掺铁磷酸镍壳异质结构纳米片(Ni0.9Fe0.1S@NiFe(PO4)x/NF)。异质界面诱导了 Ni0.9Fe0.1S 和 NiFe(PO4)x 相之间的电子相互作用,有利于 OER。该电极具有出色的 OER 性能,在电流密度为 10 mA cm-2 和 100 mA cm-2 时,过电位分别为 208 mV 和 246 mV,在 1 M KOH 中的 Tafel 斜坡较低,为 38.75 mV dec-1。Ni0.9Fe0.1S@NiFe(PO4)x/NF 和 NiFe-LDH/NF 的 OER 机理途径都涉及解耦的电子和质子转移过程,而 Ni0.9Fe0.1S@NiFe(PO4)x/NF 的晶格氧氧化机理(LOM)的贡献率更高。镍位点酸性的增加导致 Ni0.9Fe0.1S@NiFe(PO4)x/NF 的 LOM 参与度提高。此外,随着表面金属硫化物和磷酸盐向氢氧化物和(氧)氢氧化物的转变,该电极还显示出较高的长期耐久性(150 小时)。这项研究为开发和设计异质氧进化电催化材料提供了新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Iron-doped nickel sulfide @ phosphate heterostructures nanosheets constructed by solvothermal P2S5 and layered double hydroxides for electrocatalytic oxygen evolution
The design of efficient and active electrocatalysts for oxygen evolution reaction (OER) is crucial for renewable energy generation. Here, crystalline iron-doped nickel sulfide core, amorphous iron-doped nickel phosphate shell heterostructured nanosheets grown on nickel foam (Ni0.9Fe0.1S@NiFe(PO4)x/NF) are prepared by solvothermal reaction of nickel iron layered double hydroxides on NF (NiFe-LDH/NF) with P2S5. The heterogeneous interface induces the electronic interaction between the Ni0.9Fe0.1S and NiFe(PO4)x phases, that is beneficial for OER. The electrode exhibits excellent OER performance, requiring only a low overpotential of 208 mV and 246 mV at current densities of 10 mA cm−2 and 100 mA cm−2, respectively, and a low Tafel slope of 38.75 mV dec−1 in 1 M KOH. The OER mechanistic pathways of Ni0.9Fe0.1S@NiFe(PO4)x/NF and NiFe-LDH/NF both involve decoupled electron and proton transfer processes, and the contribution of lattice oxygen oxidation mechanism (LOM) is higher for Ni0.9Fe0.1S@NiFe(PO4)x/NF. The increase in the acidity of Ni sites leads to the enhanced participation of LOM for Ni0.9Fe0.1S@NiFe(PO4)x/NF. Additionally, the electrode also shows high long-term durability (150 h), with the transition of surface metal sulfides and phosphates to hydroxide and (oxy) hydroxide observed. This study provides a new idea for the development and design of heterogeneous oxygen evolution electrocatalytic materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
Accelerating Sulfur Conversion Kinetics via CoS2-MgS Heterostructure for Lithium Sulfur Batteries Iron-doped nickel sulfide @ phosphate heterostructures nanosheets constructed by solvothermal P2S5 and layered double hydroxides for electrocatalytic oxygen evolution Hybrid d0 and d10 electronic configurations promote photocatalytic activity of high-entropy oxides for CO2 conversion and water splitting Li-Modified BaCoO3-δ for Thermochemical Energy Storage: Enhanced Reaction Performance and Modification Mechanism Low CO2 Mass Transfer Promotes Methanol and Formaldehyde Electrosynthesis on Cobalt Phthalocyanine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1