预测 circRNA-miRNA 关联的多关系超图表示学习

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL Journal of Chemical Information and Modeling Pub Date : 2024-10-21 DOI:10.1021/acs.jcim.4c01436
Wenjing Yin, Shudong Wang, Yuanyuan Zhang, Sibo Qiao, Wenhao Wu, Hengxiao Li
{"title":"预测 circRNA-miRNA 关联的多关系超图表示学习","authors":"Wenjing Yin, Shudong Wang, Yuanyuan Zhang, Sibo Qiao, Wenhao Wu, Hengxiao Li","doi":"10.1021/acs.jcim.4c01436","DOIUrl":null,"url":null,"abstract":"One of the principal functions of circular RNA (circRNA) is to participate in gene regulation by sponging microRNAs (miRNAs). Using accumulated circRNA-miRNA associations (CMAs) to construct computational models for predicting potential associations provides a crucial tool for accelerating the validation of reliable associations through traditional experiments. Nevertheless, the current prediction models are constrained in their capacity to represent the higher-order relationships of CMAs and thus require further enhancement in terms of their predictive efficacy. In order to address this issue, we propose a new model based on multirelational hypergraph representation learning (MRHRL). This model employs hypergraphs to capture various higher-order relationships among RNAs and aggregates complementary information through a view attention mechanism. Furthermore, MRHRL introduces a hyperedge-level reconstruction task, jointly optimizing the prediction and reconstruction tasks within a unified framework to uncover potential information, thereby enhancing the model’s predictive and generalization capabilities. Experiments conducted on three real-world data sets demonstrate that MRHRL achieves satisfactory results in CMAs prediction, significantly outperforming existing prediction models.","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multirelational Hypergraph Representation Learning for Predicting circRNA-miRNA Associations\",\"authors\":\"Wenjing Yin, Shudong Wang, Yuanyuan Zhang, Sibo Qiao, Wenhao Wu, Hengxiao Li\",\"doi\":\"10.1021/acs.jcim.4c01436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the principal functions of circular RNA (circRNA) is to participate in gene regulation by sponging microRNAs (miRNAs). Using accumulated circRNA-miRNA associations (CMAs) to construct computational models for predicting potential associations provides a crucial tool for accelerating the validation of reliable associations through traditional experiments. Nevertheless, the current prediction models are constrained in their capacity to represent the higher-order relationships of CMAs and thus require further enhancement in terms of their predictive efficacy. In order to address this issue, we propose a new model based on multirelational hypergraph representation learning (MRHRL). This model employs hypergraphs to capture various higher-order relationships among RNAs and aggregates complementary information through a view attention mechanism. Furthermore, MRHRL introduces a hyperedge-level reconstruction task, jointly optimizing the prediction and reconstruction tasks within a unified framework to uncover potential information, thereby enhancing the model’s predictive and generalization capabilities. Experiments conducted on three real-world data sets demonstrate that MRHRL achieves satisfactory results in CMAs prediction, significantly outperforming existing prediction models.\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.4c01436\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01436","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

环状 RNA(circRNA)的主要功能之一是通过吸附微 RNA(miRNA)参与基因调控。利用积累的环状 RNA-miRNA 关联(CMA)构建预测潜在关联的计算模型,为通过传统实验加速验证可靠关联提供了重要工具。然而,目前的预测模型在表示 CMAs 的高阶关系方面受到限制,因此需要进一步提高其预测功效。为了解决这个问题,我们提出了一种基于多关系超图表示学习(MRHRL)的新模型。该模型利用超图捕捉 RNA 之间的各种高阶关系,并通过视图注意机制聚合互补信息。此外,MRHRL 还引入了超边级重构任务,在统一框架内联合优化预测和重构任务,挖掘潜在信息,从而增强模型的预测和泛化能力。在三个真实世界数据集上进行的实验证明,MRHRL 在 CMAs 预测方面取得了令人满意的结果,明显优于现有的预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multirelational Hypergraph Representation Learning for Predicting circRNA-miRNA Associations
One of the principal functions of circular RNA (circRNA) is to participate in gene regulation by sponging microRNAs (miRNAs). Using accumulated circRNA-miRNA associations (CMAs) to construct computational models for predicting potential associations provides a crucial tool for accelerating the validation of reliable associations through traditional experiments. Nevertheless, the current prediction models are constrained in their capacity to represent the higher-order relationships of CMAs and thus require further enhancement in terms of their predictive efficacy. In order to address this issue, we propose a new model based on multirelational hypergraph representation learning (MRHRL). This model employs hypergraphs to capture various higher-order relationships among RNAs and aggregates complementary information through a view attention mechanism. Furthermore, MRHRL introduces a hyperedge-level reconstruction task, jointly optimizing the prediction and reconstruction tasks within a unified framework to uncover potential information, thereby enhancing the model’s predictive and generalization capabilities. Experiments conducted on three real-world data sets demonstrate that MRHRL achieves satisfactory results in CMAs prediction, significantly outperforming existing prediction models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
期刊最新文献
Multimodal Representation Learning via Graph Isomorphism Network for Toxicity Multitask Learning Multirelational Hypergraph Representation Learning for Predicting circRNA-miRNA Associations Ramachandran-like Conformational Space for DNA Exploration of Cryptic Pockets Using Enhanced Sampling Along Normal Modes: A Case Study of KRAS G12D Analysis of Glycan Recognition by Concanavalin A Using Absolute Binding Free Energy Calculations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1