类似于榫头的离子/电子导电界面有助于制造长周期固态锂金属电池

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2024-10-21 DOI:10.1039/d4ta05312e
Guoxiang Zheng, Yifan Jin, Michal Sedlacik, Elif Vargun, Yifan Zhang, Ying He, Petr Saha, Qilin Cheng
{"title":"类似于榫头的离子/电子导电界面有助于制造长周期固态锂金属电池","authors":"Guoxiang Zheng, Yifan Jin, Michal Sedlacik, Elif Vargun, Yifan Zhang, Ying He, Petr Saha, Qilin Cheng","doi":"10.1039/d4ta05312e","DOIUrl":null,"url":null,"abstract":"The high energy density and superior safety of solid-state lithium metal batteries (SSLMBs) has been recognized as a next-generation energy storage system with great attention. Garnet-type oxide solid-state electrolytes, especially Li6.4La3Zr1.4Ta0.6O12 (LLZTO), with high ionic conductivity, low activation energy and superior stability with Li, are among the most promising solid-state electrolyte materials. However, high interfacial resistance, uneven lithium deposition and lithium dendrite growth between Li/LLZTO interfaces have hindered the industrialization development of SSLMBs. In this work, a novel mortise-tenon-like hybrid ionic/electronic conductive interface (Li/LZFC@LLZTO) is constructed, which is composed of LiF, LiCl, and Li-Zn alloy through an in situ transformation reaction. As expected, the interfacial impedance of Li/LZFC@LLZTO|Li is significantly reduced from 128 Ω cm2 to 2.7 Ω cm2 and the critical current density increases from 0.3 mA cm-2 to 2.1 mA cm-2, as well as prominent cycling performance of 6600 h at 0.2 mA cm-2 or 900 h at 0.4 mA cm-2. Consequently, both the Li|LZFC@LLZTO|LiFePO4 and Li|LZFC@LLZTO|LiNi0.8Co0.1Mn0.1O2 full cells exhibit excellent rate performance. Furthermore, Li|LZFC@LLZTO|LiFePO4 can maintain a high discharge specific capacity close to 140 mAh g-1 at 0.2 C after 150 cycles of stable cycling. This work lays the foundation for developing garnet-based SSLMBs with high critical current density, low interfacial impedance and long-term cycling performance.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mortise-tenon-like ionic/electronic conductive interface facilitates long-cycle solid-state lithium metal batteries\",\"authors\":\"Guoxiang Zheng, Yifan Jin, Michal Sedlacik, Elif Vargun, Yifan Zhang, Ying He, Petr Saha, Qilin Cheng\",\"doi\":\"10.1039/d4ta05312e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high energy density and superior safety of solid-state lithium metal batteries (SSLMBs) has been recognized as a next-generation energy storage system with great attention. Garnet-type oxide solid-state electrolytes, especially Li6.4La3Zr1.4Ta0.6O12 (LLZTO), with high ionic conductivity, low activation energy and superior stability with Li, are among the most promising solid-state electrolyte materials. However, high interfacial resistance, uneven lithium deposition and lithium dendrite growth between Li/LLZTO interfaces have hindered the industrialization development of SSLMBs. In this work, a novel mortise-tenon-like hybrid ionic/electronic conductive interface (Li/LZFC@LLZTO) is constructed, which is composed of LiF, LiCl, and Li-Zn alloy through an in situ transformation reaction. As expected, the interfacial impedance of Li/LZFC@LLZTO|Li is significantly reduced from 128 Ω cm2 to 2.7 Ω cm2 and the critical current density increases from 0.3 mA cm-2 to 2.1 mA cm-2, as well as prominent cycling performance of 6600 h at 0.2 mA cm-2 or 900 h at 0.4 mA cm-2. Consequently, both the Li|LZFC@LLZTO|LiFePO4 and Li|LZFC@LLZTO|LiNi0.8Co0.1Mn0.1O2 full cells exhibit excellent rate performance. Furthermore, Li|LZFC@LLZTO|LiFePO4 can maintain a high discharge specific capacity close to 140 mAh g-1 at 0.2 C after 150 cycles of stable cycling. This work lays the foundation for developing garnet-based SSLMBs with high critical current density, low interfacial impedance and long-term cycling performance.\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ta05312e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta05312e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

固态锂金属电池(SSLMB)具有高能量密度和卓越的安全性,已被公认为下一代储能系统,备受关注。石榴石型氧化物固态电解质,尤其是 Li6.4La3Zr1.4Ta0.6O12(LLZTO),具有高离子电导率、低活化能和优异的锂稳定性,是最有前途的固态电解质材料之一。然而,高界面电阻、锂沉积不均匀以及锂/LLZTO 界面之间的锂枝晶生长等问题阻碍了 SSLMB 的产业化发展。本研究通过原位转化反应,构建了一种由 LiF、LiCl 和 Li-Zn 合金组成的新型榫卯状混合离子/导电界面(Li/LZFC@LLZTO)。正如预期的那样,Li/LZFC@LLZTO|Li 的界面阻抗从 128 Ω cm2 显著降低到 2.7 Ω cm2,临界电流密度从 0.3 mA cm-2 增加到 2.1 mA cm-2,并且在 0.2 mA cm-2 下可循环使用 6600 小时,在 0.4 mA cm-2 下可循环使用 900 小时。因此,Li|LZFC@LLZTO|LiFePO4 和 Li|LZFC@LLZTO|LiNi0.8Co0.1Mn0.1O2 全电池都表现出优异的速率性能。此外,Li|LZFC@LLZTO|LiFePO4 在 0.2 C 下稳定循环 150 次后,仍能保持接近 140 mAh g-1 的高放电比容量。这项工作为开发具有高临界电流密度、低界面阻抗和长期循环性能的石榴石基 SSLMB 奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mortise-tenon-like ionic/electronic conductive interface facilitates long-cycle solid-state lithium metal batteries
The high energy density and superior safety of solid-state lithium metal batteries (SSLMBs) has been recognized as a next-generation energy storage system with great attention. Garnet-type oxide solid-state electrolytes, especially Li6.4La3Zr1.4Ta0.6O12 (LLZTO), with high ionic conductivity, low activation energy and superior stability with Li, are among the most promising solid-state electrolyte materials. However, high interfacial resistance, uneven lithium deposition and lithium dendrite growth between Li/LLZTO interfaces have hindered the industrialization development of SSLMBs. In this work, a novel mortise-tenon-like hybrid ionic/electronic conductive interface (Li/LZFC@LLZTO) is constructed, which is composed of LiF, LiCl, and Li-Zn alloy through an in situ transformation reaction. As expected, the interfacial impedance of Li/LZFC@LLZTO|Li is significantly reduced from 128 Ω cm2 to 2.7 Ω cm2 and the critical current density increases from 0.3 mA cm-2 to 2.1 mA cm-2, as well as prominent cycling performance of 6600 h at 0.2 mA cm-2 or 900 h at 0.4 mA cm-2. Consequently, both the Li|LZFC@LLZTO|LiFePO4 and Li|LZFC@LLZTO|LiNi0.8Co0.1Mn0.1O2 full cells exhibit excellent rate performance. Furthermore, Li|LZFC@LLZTO|LiFePO4 can maintain a high discharge specific capacity close to 140 mAh g-1 at 0.2 C after 150 cycles of stable cycling. This work lays the foundation for developing garnet-based SSLMBs with high critical current density, low interfacial impedance and long-term cycling performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
Accelerating Sulfur Conversion Kinetics via CoS2-MgS Heterostructure for Lithium Sulfur Batteries Iron-doped nickel sulfide @ phosphate heterostructures nanosheets constructed by solvothermal P2S5 and layered double hydroxides for electrocatalytic oxygen evolution Hybrid d0 and d10 electronic configurations promote photocatalytic activity of high-entropy oxides for CO2 conversion and water splitting Li-Modified BaCoO3-δ for Thermochemical Energy Storage: Enhanced Reaction Performance and Modification Mechanism Low CO2 Mass Transfer Promotes Methanol and Formaldehyde Electrosynthesis on Cobalt Phthalocyanine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1