六方氮化硼颜色中心的窄带电致发光

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-10-21 DOI:10.1021/acs.nanolett.4c03824
Gyuna Park, Ivan Zhigulin, Hoyoung Jung, Jake Horder, Karin Yamamura, Yerin Han, Hyunje Cho, Hyeon-Woo Jeong, Kenji Watanabe, Takashi Taniguchi, Myungchul Oh, Gil-Ho Lee, Moon-Ho Jo, Igor Aharonovich, Jonghwan Kim
{"title":"六方氮化硼颜色中心的窄带电致发光","authors":"Gyuna Park, Ivan Zhigulin, Hoyoung Jung, Jake Horder, Karin Yamamura, Yerin Han, Hyunje Cho, Hyeon-Woo Jeong, Kenji Watanabe, Takashi Taniguchi, Myungchul Oh, Gil-Ho Lee, Moon-Ho Jo, Igor Aharonovich, Jonghwan Kim","doi":"10.1021/acs.nanolett.4c03824","DOIUrl":null,"url":null,"abstract":"Defects in wide bandgap materials have emerged as promising candidates for solid-state quantum optical technologies. Electrical excitation of single emitters may lead to scalable on-chip devices and therefore is highly sought after. However, most wide bandgap materials are not amenable to efficient doping, posing challenges for electrical excitation and on-chip integration. Here, we demonstrate narrowband electroluminescence from visible and near-infrared color centers in hexagonal boron nitride (hBN). We harness van der Waals tunnel junctions of graphene–hBN–graphene. Charge carriers are electrically injected into hBN, exciting localized defects that emit nonclassical light, as characterized by the second order correlation measurement. Remarkably, the devices operate at room temperature and produce robust, narrowband emission spanning from visible to the near-infrared. Our work marks an important milestone in vdW materials and their promising attributes for integrated quantum technologies and on-chip photonic circuits.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Narrowband Electroluminescence from Color Centers in Hexagonal Boron Nitride\",\"authors\":\"Gyuna Park, Ivan Zhigulin, Hoyoung Jung, Jake Horder, Karin Yamamura, Yerin Han, Hyunje Cho, Hyeon-Woo Jeong, Kenji Watanabe, Takashi Taniguchi, Myungchul Oh, Gil-Ho Lee, Moon-Ho Jo, Igor Aharonovich, Jonghwan Kim\",\"doi\":\"10.1021/acs.nanolett.4c03824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Defects in wide bandgap materials have emerged as promising candidates for solid-state quantum optical technologies. Electrical excitation of single emitters may lead to scalable on-chip devices and therefore is highly sought after. However, most wide bandgap materials are not amenable to efficient doping, posing challenges for electrical excitation and on-chip integration. Here, we demonstrate narrowband electroluminescence from visible and near-infrared color centers in hexagonal boron nitride (hBN). We harness van der Waals tunnel junctions of graphene–hBN–graphene. Charge carriers are electrically injected into hBN, exciting localized defects that emit nonclassical light, as characterized by the second order correlation measurement. Remarkably, the devices operate at room temperature and produce robust, narrowband emission spanning from visible to the near-infrared. Our work marks an important milestone in vdW materials and their promising attributes for integrated quantum technologies and on-chip photonic circuits.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c03824\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03824","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

宽带隙材料中的缺陷已成为固态量子光学技术的理想候选材料。对单个发射极进行电激发可实现可扩展的片上设备,因此备受追捧。然而,大多数宽带隙材料无法进行有效掺杂,这给电激发和片上集成带来了挑战。在这里,我们展示了六方氮化硼(hBN)中可见光和近红外色心的窄带电致发光。我们利用了石墨烯-六方氮化硼-石墨烯的范德华隧道结。电荷载流子被电注入到氮化硼中,激发局部缺陷,从而发出非经典光,二阶相关测量就是证明。值得注意的是,这些器件可在室温下工作,并产生从可见光到近红外的强窄带发射。我们的工作标志着 vdW 材料及其在集成量子技术和片上光子电路方面的前景,是一个重要的里程碑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Narrowband Electroluminescence from Color Centers in Hexagonal Boron Nitride
Defects in wide bandgap materials have emerged as promising candidates for solid-state quantum optical technologies. Electrical excitation of single emitters may lead to scalable on-chip devices and therefore is highly sought after. However, most wide bandgap materials are not amenable to efficient doping, posing challenges for electrical excitation and on-chip integration. Here, we demonstrate narrowband electroluminescence from visible and near-infrared color centers in hexagonal boron nitride (hBN). We harness van der Waals tunnel junctions of graphene–hBN–graphene. Charge carriers are electrically injected into hBN, exciting localized defects that emit nonclassical light, as characterized by the second order correlation measurement. Remarkably, the devices operate at room temperature and produce robust, narrowband emission spanning from visible to the near-infrared. Our work marks an important milestone in vdW materials and their promising attributes for integrated quantum technologies and on-chip photonic circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Nanomagnetic Guidance Shapes the Structure–Function Relationship of Developing Cortical Networks High-Resolution Distance Dependence Interrogation of Scanning Ion Conductance Microscopic Tip-Enhanced Raman Spectroscopy Enabled by Two-Dimensional Molybdenum Disulfide Substrates Quantitative Analysis of Protein–Protein Equilibrium Constants in Cellular Environments Using Single-Molecule Localization Microscopy Salmonella Biomimetic Nanoparticles for Photothermal-Chemotherapy of Colorectal Cancer Driving DNA Nanopore Membrane Insertion through Dipolar Coupling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1