Dmitry Pruttskov, Nikolai Krivoruchko, Alexey Kirichenko
{"title":"改进氯化镁-6H2O 和氯化钾-氯化镁-6H2O 的脱水技术","authors":"Dmitry Pruttskov, Nikolai Krivoruchko, Alexey Kirichenko","doi":"10.1007/s11837-024-06848-0","DOIUrl":null,"url":null,"abstract":"<div><p>The paper summarizes the results of the authors’ studies on the improvement of the dehydration technology of bischofite (MgCl<sub>2</sub>·6H<sub>2</sub>O) and carnallite (KCl·MgCl<sub>2</sub>·6H<sub>2</sub>O). Hydrolysis is suppressed by creating excess pressure of hydrogen chloride (HCl) in a dehydration apparatus. An effective technology is the production of slightly hydrolyzed bi-aqueous salts in solid form and their subsequent melting in the presence of HCl-containing gases. A simple and efficient way to produce the latter is the combustion of methane (CH<sub>4</sub>) in a mixture of chlorine and air in immersion burners. The kinetics of chlorination of Mg(OH)Cl with HCl-containing gases has been studied. It was found that the reaction rate was limited by the absorption of HCl. The operation of the apparatus for salts dehydration is considered from the point of view of the ideal mixing reactor model. Changes in the apparatus and technological scheme of obtaining magnesium from carnallite are proposed.</p></div>","PeriodicalId":605,"journal":{"name":"JOM","volume":"76 11","pages":"6589 - 6599"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Dehydration Technology of MgCl2·6H2O and KCl·MgCl2·6H2O\",\"authors\":\"Dmitry Pruttskov, Nikolai Krivoruchko, Alexey Kirichenko\",\"doi\":\"10.1007/s11837-024-06848-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper summarizes the results of the authors’ studies on the improvement of the dehydration technology of bischofite (MgCl<sub>2</sub>·6H<sub>2</sub>O) and carnallite (KCl·MgCl<sub>2</sub>·6H<sub>2</sub>O). Hydrolysis is suppressed by creating excess pressure of hydrogen chloride (HCl) in a dehydration apparatus. An effective technology is the production of slightly hydrolyzed bi-aqueous salts in solid form and their subsequent melting in the presence of HCl-containing gases. A simple and efficient way to produce the latter is the combustion of methane (CH<sub>4</sub>) in a mixture of chlorine and air in immersion burners. The kinetics of chlorination of Mg(OH)Cl with HCl-containing gases has been studied. It was found that the reaction rate was limited by the absorption of HCl. The operation of the apparatus for salts dehydration is considered from the point of view of the ideal mixing reactor model. Changes in the apparatus and technological scheme of obtaining magnesium from carnallite are proposed.</p></div>\",\"PeriodicalId\":605,\"journal\":{\"name\":\"JOM\",\"volume\":\"76 11\",\"pages\":\"6589 - 6599\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOM\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11837-024-06848-0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOM","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11837-024-06848-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Improving the Dehydration Technology of MgCl2·6H2O and KCl·MgCl2·6H2O
The paper summarizes the results of the authors’ studies on the improvement of the dehydration technology of bischofite (MgCl2·6H2O) and carnallite (KCl·MgCl2·6H2O). Hydrolysis is suppressed by creating excess pressure of hydrogen chloride (HCl) in a dehydration apparatus. An effective technology is the production of slightly hydrolyzed bi-aqueous salts in solid form and their subsequent melting in the presence of HCl-containing gases. A simple and efficient way to produce the latter is the combustion of methane (CH4) in a mixture of chlorine and air in immersion burners. The kinetics of chlorination of Mg(OH)Cl with HCl-containing gases has been studied. It was found that the reaction rate was limited by the absorption of HCl. The operation of the apparatus for salts dehydration is considered from the point of view of the ideal mixing reactor model. Changes in the apparatus and technological scheme of obtaining magnesium from carnallite are proposed.
期刊介绍:
JOM is a technical journal devoted to exploring the many aspects of materials science and engineering. JOM reports scholarly work that explores the state-of-the-art processing, fabrication, design, and application of metals, ceramics, plastics, composites, and other materials. In pursuing this goal, JOM strives to balance the interests of the laboratory and the marketplace by reporting academic, industrial, and government-sponsored work from around the world.