{"title":"Chronobridge:在时态知识图谱中增强时态和关系推理的新框架","authors":"Qian Liu, Siling Feng, Mengxing Huang, Uzair Aslam Bhatti","doi":"10.1007/s10462-024-10983-0","DOIUrl":null,"url":null,"abstract":"<div><p>The task of predicting entities and relations in Temporal Knowledge Graph (TKG) extrapolation is crucial and has been studied extensively. Mainstream algorithms, such as Gated Recurrent Unit (GRU) models, primarily focus on encoding historical factual features within TKGs, often neglecting the importance of incorporating entities and relational features during decoding. This bias ultimately leads to loss of detail and inadequate prediction accuracy during the inference process. To address this issue, a novel ChronoBridge framework is proposed that features a dual mechanism of a chronological node encoder and a bridged feature fusion decoder. Specifically, the chronological node encoder employs an advanced recursive neural network with an enhanced GRU in an autoregressive manner to model historical KG sequences, thereby accurately capturing entity changes over time and significantly enhancing the model’s ability to identify and encode temporal patterns of facts across the timeline. Meanwhile, the bridged feature fusion decoder utilizes a new variant of GRU and a multilayer perception mechanism during the prediction phase to extract entity and relation features and fuse them for inference, thereby strengthening the reasoning capabilities of the model for future events. Testing on three standard datasets showed significant improvements, with a 25.21% increase in MRR accuracy and a 39.38% enhancement in relation inference. This advancement not only improves the understanding of temporal evolution in knowledge graphs but also sets a foundation for future research and applications of TKG reasoning.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"57 12","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-10983-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Chronobridge: a novel framework for enhanced temporal and relational reasoning in temporal knowledge graphs\",\"authors\":\"Qian Liu, Siling Feng, Mengxing Huang, Uzair Aslam Bhatti\",\"doi\":\"10.1007/s10462-024-10983-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The task of predicting entities and relations in Temporal Knowledge Graph (TKG) extrapolation is crucial and has been studied extensively. Mainstream algorithms, such as Gated Recurrent Unit (GRU) models, primarily focus on encoding historical factual features within TKGs, often neglecting the importance of incorporating entities and relational features during decoding. This bias ultimately leads to loss of detail and inadequate prediction accuracy during the inference process. To address this issue, a novel ChronoBridge framework is proposed that features a dual mechanism of a chronological node encoder and a bridged feature fusion decoder. Specifically, the chronological node encoder employs an advanced recursive neural network with an enhanced GRU in an autoregressive manner to model historical KG sequences, thereby accurately capturing entity changes over time and significantly enhancing the model’s ability to identify and encode temporal patterns of facts across the timeline. Meanwhile, the bridged feature fusion decoder utilizes a new variant of GRU and a multilayer perception mechanism during the prediction phase to extract entity and relation features and fuse them for inference, thereby strengthening the reasoning capabilities of the model for future events. Testing on three standard datasets showed significant improvements, with a 25.21% increase in MRR accuracy and a 39.38% enhancement in relation inference. This advancement not only improves the understanding of temporal evolution in knowledge graphs but also sets a foundation for future research and applications of TKG reasoning.</p></div>\",\"PeriodicalId\":8449,\"journal\":{\"name\":\"Artificial Intelligence Review\",\"volume\":\"57 12\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10462-024-10983-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10462-024-10983-0\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-10983-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Chronobridge: a novel framework for enhanced temporal and relational reasoning in temporal knowledge graphs
The task of predicting entities and relations in Temporal Knowledge Graph (TKG) extrapolation is crucial and has been studied extensively. Mainstream algorithms, such as Gated Recurrent Unit (GRU) models, primarily focus on encoding historical factual features within TKGs, often neglecting the importance of incorporating entities and relational features during decoding. This bias ultimately leads to loss of detail and inadequate prediction accuracy during the inference process. To address this issue, a novel ChronoBridge framework is proposed that features a dual mechanism of a chronological node encoder and a bridged feature fusion decoder. Specifically, the chronological node encoder employs an advanced recursive neural network with an enhanced GRU in an autoregressive manner to model historical KG sequences, thereby accurately capturing entity changes over time and significantly enhancing the model’s ability to identify and encode temporal patterns of facts across the timeline. Meanwhile, the bridged feature fusion decoder utilizes a new variant of GRU and a multilayer perception mechanism during the prediction phase to extract entity and relation features and fuse them for inference, thereby strengthening the reasoning capabilities of the model for future events. Testing on three standard datasets showed significant improvements, with a 25.21% increase in MRR accuracy and a 39.38% enhancement in relation inference. This advancement not only improves the understanding of temporal evolution in knowledge graphs but also sets a foundation for future research and applications of TKG reasoning.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.