Kaarthick Raaja Venkatachalam, Sachin M B Gautham, Anegondi Nateriachyuth, Jegatha Nambi Krishnan
{"title":"用于海水淡化的磺化聚(芳基醚砜)和磺化聚苯并咪唑共混膜及其特性分析","authors":"Kaarthick Raaja Venkatachalam, Sachin M B Gautham, Anegondi Nateriachyuth, Jegatha Nambi Krishnan","doi":"10.1007/s12034-024-03322-0","DOIUrl":null,"url":null,"abstract":"<div><p>Upon polycondensing, the monosodium salt of 2-sulphoterepthalic acid and 3,3′-diaminobenzidine resulted in sulphonated polybenzimidazole (s-p-PBI; amphiphilic polymer). The amphiphilic polymer was blended with commercially available sulphonated poly(arylene ether sulphone) (SPAES; acid polymer; IEC = 2.08 meq g<sup>−1</sup>). The s-p-PBI content in blend composition is varied from 2.5 to 30% (w/w). ATR-FTIR spectroscopy and TG analysis were examined to identify the interactions between the polymers upon blending. Cross-sectional morphology was analysed through SEM. With amphiphilic polymer addition, chlorine (hypochlorite) stability decreased and tensile strength improved. All the blend membranes showed improved water transport or restricted salt permeability than the pristine membrane (acid polymer). Water diffusivity permeability (<i>P</i><sub>w</sub>) of blend membrane AC-AM-97.5 (i.e., 97.5% (w/w) of SPAES and 2.5% (w/w) of s-p-PBI) is 1.285 cm<sup>2</sup> s<sup>−1</sup>, while the pristine membrane is 0.864 cm<sup>2</sup> s<sup>−1</sup>. NaCl permeability selectivity (<i>P</i><sub>w</sub><i>/P</i><sub>s</sub>) of AC-AM-97.5 is 0.208 × 10<sup>3</sup>, whereas pristine membrane shows 0.102 × 10<sup>3</sup>.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blend membranes of sulphonated poly(arylene ether sulphone) and sulphonated polybenzimidazole and their characterization for desalination applications\",\"authors\":\"Kaarthick Raaja Venkatachalam, Sachin M B Gautham, Anegondi Nateriachyuth, Jegatha Nambi Krishnan\",\"doi\":\"10.1007/s12034-024-03322-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Upon polycondensing, the monosodium salt of 2-sulphoterepthalic acid and 3,3′-diaminobenzidine resulted in sulphonated polybenzimidazole (s-p-PBI; amphiphilic polymer). The amphiphilic polymer was blended with commercially available sulphonated poly(arylene ether sulphone) (SPAES; acid polymer; IEC = 2.08 meq g<sup>−1</sup>). The s-p-PBI content in blend composition is varied from 2.5 to 30% (w/w). ATR-FTIR spectroscopy and TG analysis were examined to identify the interactions between the polymers upon blending. Cross-sectional morphology was analysed through SEM. With amphiphilic polymer addition, chlorine (hypochlorite) stability decreased and tensile strength improved. All the blend membranes showed improved water transport or restricted salt permeability than the pristine membrane (acid polymer). Water diffusivity permeability (<i>P</i><sub>w</sub>) of blend membrane AC-AM-97.5 (i.e., 97.5% (w/w) of SPAES and 2.5% (w/w) of s-p-PBI) is 1.285 cm<sup>2</sup> s<sup>−1</sup>, while the pristine membrane is 0.864 cm<sup>2</sup> s<sup>−1</sup>. NaCl permeability selectivity (<i>P</i><sub>w</sub><i>/P</i><sub>s</sub>) of AC-AM-97.5 is 0.208 × 10<sup>3</sup>, whereas pristine membrane shows 0.102 × 10<sup>3</sup>.</p></div>\",\"PeriodicalId\":502,\"journal\":{\"name\":\"Bulletin of Materials Science\",\"volume\":\"47 4\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12034-024-03322-0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12034-024-03322-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Blend membranes of sulphonated poly(arylene ether sulphone) and sulphonated polybenzimidazole and their characterization for desalination applications
Upon polycondensing, the monosodium salt of 2-sulphoterepthalic acid and 3,3′-diaminobenzidine resulted in sulphonated polybenzimidazole (s-p-PBI; amphiphilic polymer). The amphiphilic polymer was blended with commercially available sulphonated poly(arylene ether sulphone) (SPAES; acid polymer; IEC = 2.08 meq g−1). The s-p-PBI content in blend composition is varied from 2.5 to 30% (w/w). ATR-FTIR spectroscopy and TG analysis were examined to identify the interactions between the polymers upon blending. Cross-sectional morphology was analysed through SEM. With amphiphilic polymer addition, chlorine (hypochlorite) stability decreased and tensile strength improved. All the blend membranes showed improved water transport or restricted salt permeability than the pristine membrane (acid polymer). Water diffusivity permeability (Pw) of blend membrane AC-AM-97.5 (i.e., 97.5% (w/w) of SPAES and 2.5% (w/w) of s-p-PBI) is 1.285 cm2 s−1, while the pristine membrane is 0.864 cm2 s−1. NaCl permeability selectivity (Pw/Ps) of AC-AM-97.5 is 0.208 × 103, whereas pristine membrane shows 0.102 × 103.
期刊介绍:
The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.