Jan Appelhaus, Kristina E. Steffens, Karl G. Wagner
{"title":"液体装载量和粘合剂类型对介孔二氧化硅基胶凝剂片剂性的影响","authors":"Jan Appelhaus, Kristina E. Steffens, Karl G. Wagner","doi":"10.1208/s12249-024-02958-9","DOIUrl":null,"url":null,"abstract":"<div><p>Mesoporous silica offers an easy way to transform liquids into solids, due to their high loading capacity for liquid or dissolved active ingredients and the resulting enhanced dissolution properties. However, the compression of both unloaded and loaded mesoporous silica bulk material into tablets is challenging, due to poor/non-existing binding capacity. This becomes critical when high drug loads are to be achieved and the fraction of additional excipients in the final tablet formulation needs to be kept at a minimum. Our study aimed to investigate the mechanism of compression and tabletability dependent on the Liquid Load Level of the silica and type of filler/binder in binary tabletting mixtures. To this end, Vivapur® 101, FlowLac® 90, Pearlitol® 200 SD and tricalcium citrate tetrahydrate were selected and mixed with Syloid® XDP 3050 at various Liquid Load Levels. Compaction characteristics were analysed using the StylOne® Classic 105 ML compaction simulator. Additionally, the Overall Liquid Load (OLL) was defined as a new critical quality attribute for liquisolid tablets. The Overall Liquid Load allows straightforward, formulation-relevant comparisons between various fillers/binders, liquid components, and silica types. Results indicate strong binding capacity and high plasticity of the fillers/binders as key components for successful high liquid load silica tablet formulation. A volumetric combination of 30% Vivapur® 101 and 70% 0.75 mL/g loaded Syloid® XDP 3050 proved to be the most effective mixture, achieving an Overall Liquid Load of 36–41% [<i>v</i>/<i>v</i>] and maintaining a tensile strength of 1.5 N/mm<sup>2</sup> with various liquid vehicles.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"25 8","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1208/s12249-024-02958-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of Liquid Load Level and Binder Type on the Tabletability of Mesoporous Silica Based Liquisolids\",\"authors\":\"Jan Appelhaus, Kristina E. Steffens, Karl G. Wagner\",\"doi\":\"10.1208/s12249-024-02958-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mesoporous silica offers an easy way to transform liquids into solids, due to their high loading capacity for liquid or dissolved active ingredients and the resulting enhanced dissolution properties. However, the compression of both unloaded and loaded mesoporous silica bulk material into tablets is challenging, due to poor/non-existing binding capacity. This becomes critical when high drug loads are to be achieved and the fraction of additional excipients in the final tablet formulation needs to be kept at a minimum. Our study aimed to investigate the mechanism of compression and tabletability dependent on the Liquid Load Level of the silica and type of filler/binder in binary tabletting mixtures. To this end, Vivapur® 101, FlowLac® 90, Pearlitol® 200 SD and tricalcium citrate tetrahydrate were selected and mixed with Syloid® XDP 3050 at various Liquid Load Levels. Compaction characteristics were analysed using the StylOne® Classic 105 ML compaction simulator. Additionally, the Overall Liquid Load (OLL) was defined as a new critical quality attribute for liquisolid tablets. The Overall Liquid Load allows straightforward, formulation-relevant comparisons between various fillers/binders, liquid components, and silica types. Results indicate strong binding capacity and high plasticity of the fillers/binders as key components for successful high liquid load silica tablet formulation. A volumetric combination of 30% Vivapur® 101 and 70% 0.75 mL/g loaded Syloid® XDP 3050 proved to be the most effective mixture, achieving an Overall Liquid Load of 36–41% [<i>v</i>/<i>v</i>] and maintaining a tensile strength of 1.5 N/mm<sup>2</sup> with various liquid vehicles.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":6925,\"journal\":{\"name\":\"AAPS PharmSciTech\",\"volume\":\"25 8\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1208/s12249-024-02958-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPS PharmSciTech\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1208/s12249-024-02958-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-024-02958-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Effect of Liquid Load Level and Binder Type on the Tabletability of Mesoporous Silica Based Liquisolids
Mesoporous silica offers an easy way to transform liquids into solids, due to their high loading capacity for liquid or dissolved active ingredients and the resulting enhanced dissolution properties. However, the compression of both unloaded and loaded mesoporous silica bulk material into tablets is challenging, due to poor/non-existing binding capacity. This becomes critical when high drug loads are to be achieved and the fraction of additional excipients in the final tablet formulation needs to be kept at a minimum. Our study aimed to investigate the mechanism of compression and tabletability dependent on the Liquid Load Level of the silica and type of filler/binder in binary tabletting mixtures. To this end, Vivapur® 101, FlowLac® 90, Pearlitol® 200 SD and tricalcium citrate tetrahydrate were selected and mixed with Syloid® XDP 3050 at various Liquid Load Levels. Compaction characteristics were analysed using the StylOne® Classic 105 ML compaction simulator. Additionally, the Overall Liquid Load (OLL) was defined as a new critical quality attribute for liquisolid tablets. The Overall Liquid Load allows straightforward, formulation-relevant comparisons between various fillers/binders, liquid components, and silica types. Results indicate strong binding capacity and high plasticity of the fillers/binders as key components for successful high liquid load silica tablet formulation. A volumetric combination of 30% Vivapur® 101 and 70% 0.75 mL/g loaded Syloid® XDP 3050 proved to be the most effective mixture, achieving an Overall Liquid Load of 36–41% [v/v] and maintaining a tensile strength of 1.5 N/mm2 with various liquid vehicles.
期刊介绍:
AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.