Kiran Akbar, Masood Ur Rehman, Fawad Ali Shah, Sidra Younas, Jamelah S. Al-Otaibi, Haroon Khan
{"title":"基于纳米结构脂质载体的帕罗西汀负载原位凝胶通过鼻腔途径给药大脑以增强抗抑郁效果:体外前景和体内疗效","authors":"Kiran Akbar, Masood Ur Rehman, Fawad Ali Shah, Sidra Younas, Jamelah S. Al-Otaibi, Haroon Khan","doi":"10.1208/s12249-024-02954-z","DOIUrl":null,"url":null,"abstract":"<div><p>This study focused on developing a thermosensitive gel with nanostructured lipid carriers (NLCs) loaded with paroxetine (PAR) to enhance the treatment and management of depression via nasal administration. Micro emulsion technique was utilized for the PAR-NLCs preparation. The acetyl alcohol and oleic acid were used in the ratio of 76:24. In the NLCs Tween 40, Span40 and Myrj 52 were used as a surfactant. The NLCs were then added into Poloxamer mixture to get thermosensitive NLCs based gel. Characterization, <i>in vitro</i> and <i>in vivo</i> studies were performed to check the efficiency of formulation in drug delivery. The entrapment efficiency of optimized PAR-NLCs was about 90%. The particle size, zeta potential and PDI were 155 ± 1.4 nm, -25.9 ± 0.5 mV, and 0.12 ± 0.01 respectively. The optimized gel showed a gelling temperature of 31.50 ± 0.50°C and a gelling time of 1 ± 0.12 s with a pH of 6, suitable for nasal administration. The <i>in vitro</i> release assay of PAR-NLC-gel showed a cumulative release of about 59% in the first 6 h after comparison with PAR-NLCs which showed almost 100%release. <i>In vivo</i> studies included forced swim test and tail suspension tests showed significant potential for treating depression when compared to PAR-NLCs. PAR-NLCs and NLCs based gel enhanced the tissue architecture and suppressed the expression of TNF-α in brain cortex from histological and immunohistochemical analysis. PAR- NLCs gel-based delivery system can prove to be an effective delivery system for brain targeting through nose for the better management of depression.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"25 8","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Paroxetine Loaded Nanostructured Lipid Carriers Based In-situ Gel for Brain Delivery via Nasal Route for Enhanced Anti-Depressant Effect: In Vitro Prospect and In Vivo Efficacy\",\"authors\":\"Kiran Akbar, Masood Ur Rehman, Fawad Ali Shah, Sidra Younas, Jamelah S. Al-Otaibi, Haroon Khan\",\"doi\":\"10.1208/s12249-024-02954-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study focused on developing a thermosensitive gel with nanostructured lipid carriers (NLCs) loaded with paroxetine (PAR) to enhance the treatment and management of depression via nasal administration. Micro emulsion technique was utilized for the PAR-NLCs preparation. The acetyl alcohol and oleic acid were used in the ratio of 76:24. In the NLCs Tween 40, Span40 and Myrj 52 were used as a surfactant. The NLCs were then added into Poloxamer mixture to get thermosensitive NLCs based gel. Characterization, <i>in vitro</i> and <i>in vivo</i> studies were performed to check the efficiency of formulation in drug delivery. The entrapment efficiency of optimized PAR-NLCs was about 90%. The particle size, zeta potential and PDI were 155 ± 1.4 nm, -25.9 ± 0.5 mV, and 0.12 ± 0.01 respectively. The optimized gel showed a gelling temperature of 31.50 ± 0.50°C and a gelling time of 1 ± 0.12 s with a pH of 6, suitable for nasal administration. The <i>in vitro</i> release assay of PAR-NLC-gel showed a cumulative release of about 59% in the first 6 h after comparison with PAR-NLCs which showed almost 100%release. <i>In vivo</i> studies included forced swim test and tail suspension tests showed significant potential for treating depression when compared to PAR-NLCs. PAR-NLCs and NLCs based gel enhanced the tissue architecture and suppressed the expression of TNF-α in brain cortex from histological and immunohistochemical analysis. PAR- NLCs gel-based delivery system can prove to be an effective delivery system for brain targeting through nose for the better management of depression.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":6925,\"journal\":{\"name\":\"AAPS PharmSciTech\",\"volume\":\"25 8\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPS PharmSciTech\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1208/s12249-024-02954-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-024-02954-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Paroxetine Loaded Nanostructured Lipid Carriers Based In-situ Gel for Brain Delivery via Nasal Route for Enhanced Anti-Depressant Effect: In Vitro Prospect and In Vivo Efficacy
This study focused on developing a thermosensitive gel with nanostructured lipid carriers (NLCs) loaded with paroxetine (PAR) to enhance the treatment and management of depression via nasal administration. Micro emulsion technique was utilized for the PAR-NLCs preparation. The acetyl alcohol and oleic acid were used in the ratio of 76:24. In the NLCs Tween 40, Span40 and Myrj 52 were used as a surfactant. The NLCs were then added into Poloxamer mixture to get thermosensitive NLCs based gel. Characterization, in vitro and in vivo studies were performed to check the efficiency of formulation in drug delivery. The entrapment efficiency of optimized PAR-NLCs was about 90%. The particle size, zeta potential and PDI were 155 ± 1.4 nm, -25.9 ± 0.5 mV, and 0.12 ± 0.01 respectively. The optimized gel showed a gelling temperature of 31.50 ± 0.50°C and a gelling time of 1 ± 0.12 s with a pH of 6, suitable for nasal administration. The in vitro release assay of PAR-NLC-gel showed a cumulative release of about 59% in the first 6 h after comparison with PAR-NLCs which showed almost 100%release. In vivo studies included forced swim test and tail suspension tests showed significant potential for treating depression when compared to PAR-NLCs. PAR-NLCs and NLCs based gel enhanced the tissue architecture and suppressed the expression of TNF-α in brain cortex from histological and immunohistochemical analysis. PAR- NLCs gel-based delivery system can prove to be an effective delivery system for brain targeting through nose for the better management of depression.
期刊介绍:
AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.