Samuel Tanoeyadi, Wei Zhou, Andrew R Osborn, Takeshi Tsunoda, Arash Samadi, Sachin Burade, Ty J Waldo, Melanie A Higgins, Taifo Mahmud
{"title":"2-Deoxy-4-epi-scyllo-inosose (DEI) 是 EboD 的产物,EboD 是细菌和寄生藻类中一种高度保守的脱氢喹啉酸合成酶。","authors":"Samuel Tanoeyadi, Wei Zhou, Andrew R Osborn, Takeshi Tsunoda, Arash Samadi, Sachin Burade, Ty J Waldo, Melanie A Higgins, Taifo Mahmud","doi":"10.1021/acschembio.4c00510","DOIUrl":null,"url":null,"abstract":"<p><p>A cryptic cluster of genes, known as the ebo cluster, has been found in a variety of genomic contexts among bacteria and algae. In <i>Pseudomonas fluorescens</i> NZI7, the ebo cluster (a.k.a. EDB cluster) is involved in the bacterial repellent mechanism against nematode grazing. In cyanobacteria, the cluster plays a role in the transport of the scytonemin monomer from the cytosol to the periplasm. Despite their broad distribution and interesting phenotypes, neither the pathway nor the functions of the enzymes are known. Here we show that EboD proteins from the ebo clusters in <i>Nostoc punctiforme</i> and <i>Sporocytophaga myxococcoides</i> catalyze the cyclization of mannose 6-phosphate to a novel cyclitol, 2-deoxy-4-<i>epi</i>-<i>scyllo</i>-inosose. The enzyme product is postulated to be a precursor of a signaling molecule or a transporter in the organisms. This study sheds the first light onto ebo/EDB pathways and established a functionally distinct enzyme that extends the diversity of sugar phosphate cyclases.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":"2277-2283"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11567786/pdf/","citationCount":"0","resultStr":"{\"title\":\"2-Deoxy-4-<i>epi</i>-<i>scyllo</i>-inosose (DEI) is the Product of EboD, a Highly Conserved Dehydroquinate Synthase-like Enzyme in Bacteria and Eustigmatophyte Algae.\",\"authors\":\"Samuel Tanoeyadi, Wei Zhou, Andrew R Osborn, Takeshi Tsunoda, Arash Samadi, Sachin Burade, Ty J Waldo, Melanie A Higgins, Taifo Mahmud\",\"doi\":\"10.1021/acschembio.4c00510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A cryptic cluster of genes, known as the ebo cluster, has been found in a variety of genomic contexts among bacteria and algae. In <i>Pseudomonas fluorescens</i> NZI7, the ebo cluster (a.k.a. EDB cluster) is involved in the bacterial repellent mechanism against nematode grazing. In cyanobacteria, the cluster plays a role in the transport of the scytonemin monomer from the cytosol to the periplasm. Despite their broad distribution and interesting phenotypes, neither the pathway nor the functions of the enzymes are known. Here we show that EboD proteins from the ebo clusters in <i>Nostoc punctiforme</i> and <i>Sporocytophaga myxococcoides</i> catalyze the cyclization of mannose 6-phosphate to a novel cyclitol, 2-deoxy-4-<i>epi</i>-<i>scyllo</i>-inosose. The enzyme product is postulated to be a precursor of a signaling molecule or a transporter in the organisms. This study sheds the first light onto ebo/EDB pathways and established a functionally distinct enzyme that extends the diversity of sugar phosphate cyclases.</p>\",\"PeriodicalId\":11,\"journal\":{\"name\":\"ACS Chemical Biology\",\"volume\":\" \",\"pages\":\"2277-2283\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11567786/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Biology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acschembio.4c00510\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acschembio.4c00510","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
2-Deoxy-4-epi-scyllo-inosose (DEI) is the Product of EboD, a Highly Conserved Dehydroquinate Synthase-like Enzyme in Bacteria and Eustigmatophyte Algae.
A cryptic cluster of genes, known as the ebo cluster, has been found in a variety of genomic contexts among bacteria and algae. In Pseudomonas fluorescens NZI7, the ebo cluster (a.k.a. EDB cluster) is involved in the bacterial repellent mechanism against nematode grazing. In cyanobacteria, the cluster plays a role in the transport of the scytonemin monomer from the cytosol to the periplasm. Despite their broad distribution and interesting phenotypes, neither the pathway nor the functions of the enzymes are known. Here we show that EboD proteins from the ebo clusters in Nostoc punctiforme and Sporocytophaga myxococcoides catalyze the cyclization of mannose 6-phosphate to a novel cyclitol, 2-deoxy-4-epi-scyllo-inosose. The enzyme product is postulated to be a precursor of a signaling molecule or a transporter in the organisms. This study sheds the first light onto ebo/EDB pathways and established a functionally distinct enzyme that extends the diversity of sugar phosphate cyclases.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.