胆汁酸是α-突触核蛋白聚合的调节剂:对帕金森病治疗的意义。

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Neuroscience Pub Date : 2024-10-15 DOI:10.1021/acschemneuro.4c00459
Harpreet Kaur, Devansh Swadia, Sharmistha Sinha
{"title":"胆汁酸是α-突触核蛋白聚合的调节剂:对帕金森病治疗的意义。","authors":"Harpreet Kaur, Devansh Swadia, Sharmistha Sinha","doi":"10.1021/acschemneuro.4c00459","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a neurodegenerative disorder characterized by the aggregation of α-synuclein into toxic amyloid fibrils. Recent research suggests that bile acids altered in PD may influence their aggregation. This study investigates the effects of lithocholic acid (LCA) and deoxycholic acid (DCA) on α-synuclein aggregation and toxicity. LCA significantly accelerates aggregation, reducing the lag phase by 75%, while DCA has a milder impact, decreasing the lag phase by 30%. Binding studies show that LCA interacts with the NAC region and DCA with the N-terminal region of α-synuclein. Aggregation assays and electrophoresis reveal that LCA promotes the formation of toxic, SDS-resistant oligomers more effectively than DCA. Cytotoxicity assays confirm a lower cell viability in LCA-treated samples. Additionally, combined LCA and DCA treatment results in enhanced aggregation and toxicity, indicating a synergistic effect. These findings highlight the role of bile acids in α-synuclein aggregation and PD pathogenesis, suggesting that targeting bile acid metabolism could be a therapeutic strategy for PD.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bile Acids as Modulators of α-Synuclein Aggregation: Implications for Parkinson's Therapy.\",\"authors\":\"Harpreet Kaur, Devansh Swadia, Sharmistha Sinha\",\"doi\":\"10.1021/acschemneuro.4c00459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parkinson's disease (PD) is a neurodegenerative disorder characterized by the aggregation of α-synuclein into toxic amyloid fibrils. Recent research suggests that bile acids altered in PD may influence their aggregation. This study investigates the effects of lithocholic acid (LCA) and deoxycholic acid (DCA) on α-synuclein aggregation and toxicity. LCA significantly accelerates aggregation, reducing the lag phase by 75%, while DCA has a milder impact, decreasing the lag phase by 30%. Binding studies show that LCA interacts with the NAC region and DCA with the N-terminal region of α-synuclein. Aggregation assays and electrophoresis reveal that LCA promotes the formation of toxic, SDS-resistant oligomers more effectively than DCA. Cytotoxicity assays confirm a lower cell viability in LCA-treated samples. Additionally, combined LCA and DCA treatment results in enhanced aggregation and toxicity, indicating a synergistic effect. These findings highlight the role of bile acids in α-synuclein aggregation and PD pathogenesis, suggesting that targeting bile acid metabolism could be a therapeutic strategy for PD.</p>\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acschemneuro.4c00459\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00459","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

帕金森病(PD)是一种神经退行性疾病,其特征是α-突触核蛋白聚集成有毒的淀粉样纤维。最新研究表明,帕金森病患者体内胆汁酸的改变可能会影响其聚集。本研究调查了石胆酸(LCA)和脱氧胆酸(DCA)对α-突触核蛋白聚集和毒性的影响。LCA 能明显加速聚集,将滞后期缩短 75%,而 DCA 的影响较小,将滞后期缩短 30%。结合研究表明,LCA 与α-突触核蛋白的 NAC 区域相互作用,而 DCA 则与α-突触核蛋白的 N 端区域相互作用。聚合试验和电泳显示,LCA 比 DCA 更有效地促进有毒的抗 SDS 寡聚体的形成。细胞毒性检测证实,LCA处理的样本中细胞存活率较低。此外,LCA 和 DCA 联合处理会导致聚集和毒性增强,显示出协同效应。这些发现突显了胆汁酸在α-突触核蛋白聚集和帕金森病发病机制中的作用,表明针对胆汁酸代谢的研究可能是治疗帕金森病的一种策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bile Acids as Modulators of α-Synuclein Aggregation: Implications for Parkinson's Therapy.

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the aggregation of α-synuclein into toxic amyloid fibrils. Recent research suggests that bile acids altered in PD may influence their aggregation. This study investigates the effects of lithocholic acid (LCA) and deoxycholic acid (DCA) on α-synuclein aggregation and toxicity. LCA significantly accelerates aggregation, reducing the lag phase by 75%, while DCA has a milder impact, decreasing the lag phase by 30%. Binding studies show that LCA interacts with the NAC region and DCA with the N-terminal region of α-synuclein. Aggregation assays and electrophoresis reveal that LCA promotes the formation of toxic, SDS-resistant oligomers more effectively than DCA. Cytotoxicity assays confirm a lower cell viability in LCA-treated samples. Additionally, combined LCA and DCA treatment results in enhanced aggregation and toxicity, indicating a synergistic effect. These findings highlight the role of bile acids in α-synuclein aggregation and PD pathogenesis, suggesting that targeting bile acid metabolism could be a therapeutic strategy for PD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
期刊最新文献
Evaluation of Alpha-Synuclein and Tau Antiaggregation Activity of Urea and Thiourea-Based Small Molecules for Neurodegenerative Disease Therapeutics. Effects of a Serotonergic Psychedelic on the Lipid Bilayer. The Importance of Stereochemistry in 5-HT7R Modulation─A Case Study of Hydantoin Derivatives. Rational Search for Betaine/GABA Transporter 1 Inhibitors─In Vitro Evaluation of Selected Hit Compound. Exogenous Amyloid Fibrils Can Cause Significant Upregulation of Neurodegenerative Disease Proteins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1