Pedro de Andrade Horn, Tomayo I Berida, Lauren C Parr, Jacob L Bouchard, Navoda Jayakodiarachchi, Daniel C Schultz, Craig W Lindsley, Morgan L Crowley
{"title":"化学神经科学经典:美托咪定","authors":"Pedro de Andrade Horn, Tomayo I Berida, Lauren C Parr, Jacob L Bouchard, Navoda Jayakodiarachchi, Daniel C Schultz, Craig W Lindsley, Morgan L Crowley","doi":"10.1021/acschemneuro.4c00583","DOIUrl":null,"url":null,"abstract":"<p><p>Medetomidine is an FDA-approved α<sub>2</sub>-adrenoreceptor (α<sub>2</sub>-AR) agonist used as a veterinary sedative due to its analgesic, sedative, and anxiolytic properties. While it is marketed for veterinary use as a racemic mixture under the brand name Domitor, the pharmacologically active enantiomer, dexmedetomidine, is approved for sedation and analgesia in the hospital setting. Medetomidine has recently been detected in the illicit drug supply alongside fentanyl, xylazine, cocaine, and heroin, producing pronounced sedative effects that are not reversed by naloxone. The pharmacological effects along with the low cost of supply and lack of regulation for medetomidine has made it a target for misuse. Since 2022, medetomidine has been found as an adulterant in samples of seized drugs, as well as in toxicological analyses of patients admitted to the emergency department after suspected overdoses across several U.S. states and Canada. This Review will discuss the history, chemistry, structure-activity relationships, drug metabolism and pharmacokinetics (DMPK), pharmacology, and emergence of medetomidine as an adulterant in drug mixtures in the context of the current opioid drug crisis.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":"3874-3883"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587509/pdf/","citationCount":"0","resultStr":"{\"title\":\"Classics in Chemical Neuroscience: Medetomidine.\",\"authors\":\"Pedro de Andrade Horn, Tomayo I Berida, Lauren C Parr, Jacob L Bouchard, Navoda Jayakodiarachchi, Daniel C Schultz, Craig W Lindsley, Morgan L Crowley\",\"doi\":\"10.1021/acschemneuro.4c00583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Medetomidine is an FDA-approved α<sub>2</sub>-adrenoreceptor (α<sub>2</sub>-AR) agonist used as a veterinary sedative due to its analgesic, sedative, and anxiolytic properties. While it is marketed for veterinary use as a racemic mixture under the brand name Domitor, the pharmacologically active enantiomer, dexmedetomidine, is approved for sedation and analgesia in the hospital setting. Medetomidine has recently been detected in the illicit drug supply alongside fentanyl, xylazine, cocaine, and heroin, producing pronounced sedative effects that are not reversed by naloxone. The pharmacological effects along with the low cost of supply and lack of regulation for medetomidine has made it a target for misuse. Since 2022, medetomidine has been found as an adulterant in samples of seized drugs, as well as in toxicological analyses of patients admitted to the emergency department after suspected overdoses across several U.S. states and Canada. This Review will discuss the history, chemistry, structure-activity relationships, drug metabolism and pharmacokinetics (DMPK), pharmacology, and emergence of medetomidine as an adulterant in drug mixtures in the context of the current opioid drug crisis.</p>\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":\" \",\"pages\":\"3874-3883\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587509/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acschemneuro.4c00583\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00583","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Medetomidine is an FDA-approved α2-adrenoreceptor (α2-AR) agonist used as a veterinary sedative due to its analgesic, sedative, and anxiolytic properties. While it is marketed for veterinary use as a racemic mixture under the brand name Domitor, the pharmacologically active enantiomer, dexmedetomidine, is approved for sedation and analgesia in the hospital setting. Medetomidine has recently been detected in the illicit drug supply alongside fentanyl, xylazine, cocaine, and heroin, producing pronounced sedative effects that are not reversed by naloxone. The pharmacological effects along with the low cost of supply and lack of regulation for medetomidine has made it a target for misuse. Since 2022, medetomidine has been found as an adulterant in samples of seized drugs, as well as in toxicological analyses of patients admitted to the emergency department after suspected overdoses across several U.S. states and Canada. This Review will discuss the history, chemistry, structure-activity relationships, drug metabolism and pharmacokinetics (DMPK), pharmacology, and emergence of medetomidine as an adulterant in drug mixtures in the context of the current opioid drug crisis.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research