KM Sujata, Poonam Chauhan, Nidhi Verma, Rekha Garg Solanki and Ashok Kumar
{"title":"作为高效热电材料的二维 BiSbTeX2(X = S、Se、Te)及其 Janus 单层。","authors":"KM Sujata, Poonam Chauhan, Nidhi Verma, Rekha Garg Solanki and Ashok Kumar","doi":"10.1039/D4CP02750G","DOIUrl":null,"url":null,"abstract":"<p >Today, there is a huge need for highly efficient and sustainable energy resources to tackle environmental degradation and energy crisis. We have analyzed the electronic, mechanical and thermoelectric (TE) characteristics of two-dimensional (2D) BiSbTeX<small><sub>2</sub></small> (X = S, Se and Te) and Janus BiSbTeXY (X/Y = S, Se and Te) monolayers by implementing first principles simulations. These monolayers' dynamic stability and thermal stability have been demonstrated through phonon dispersion spectra and <em>ab initio</em> molecular dynamics (AIMD) simulations, respectively. The band structure of these monolayers can be tuned by applying uniaxial and biaxial strains. The investigated lattice thermal conductivity (<em>κ</em><small><sub>l</sub></small>) for these monolayers lies between 0.23 and 0.37 W m<small><sup>−1</sup></small> K<small><sup>−1</sup></small> at 300 K. For a more precise calculation of the scattering rate, we implemented electron–phonon coupling (EPC) and spin–orbit coupling effects to calculate the transport properties. For p(n)-type carriers, the power factor of these monolayers is predicted to be as high as 2.08 × 10<small><sup>−3</sup></small> W m<small><sup>−1</sup></small> K<small><sup>−2</sup></small> and (0.47 × 10<small><sup>−3</sup></small> W m<small><sup>−1</sup></small> K<small><sup>−2</sup></small>) at 300 K. The higher thermoelectric figure of merit (<em>ZT</em>) of p-type carriers at 300 K is obtained because of their very low value of <em>κ</em><small><sub>l</sub></small> and high power factor. Our theoretical investigation predicts that these monolayers can be potential candidates for fabricating highly efficient thermoelectric power generators.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 42","pages":" 27163-27175"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-dimensional BiSbTeX2 (X = S, Se, Te) and their Janus monolayers as efficient thermoelectric materials†\",\"authors\":\"KM Sujata, Poonam Chauhan, Nidhi Verma, Rekha Garg Solanki and Ashok Kumar\",\"doi\":\"10.1039/D4CP02750G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Today, there is a huge need for highly efficient and sustainable energy resources to tackle environmental degradation and energy crisis. We have analyzed the electronic, mechanical and thermoelectric (TE) characteristics of two-dimensional (2D) BiSbTeX<small><sub>2</sub></small> (X = S, Se and Te) and Janus BiSbTeXY (X/Y = S, Se and Te) monolayers by implementing first principles simulations. These monolayers' dynamic stability and thermal stability have been demonstrated through phonon dispersion spectra and <em>ab initio</em> molecular dynamics (AIMD) simulations, respectively. The band structure of these monolayers can be tuned by applying uniaxial and biaxial strains. The investigated lattice thermal conductivity (<em>κ</em><small><sub>l</sub></small>) for these monolayers lies between 0.23 and 0.37 W m<small><sup>−1</sup></small> K<small><sup>−1</sup></small> at 300 K. For a more precise calculation of the scattering rate, we implemented electron–phonon coupling (EPC) and spin–orbit coupling effects to calculate the transport properties. For p(n)-type carriers, the power factor of these monolayers is predicted to be as high as 2.08 × 10<small><sup>−3</sup></small> W m<small><sup>−1</sup></small> K<small><sup>−2</sup></small> and (0.47 × 10<small><sup>−3</sup></small> W m<small><sup>−1</sup></small> K<small><sup>−2</sup></small>) at 300 K. The higher thermoelectric figure of merit (<em>ZT</em>) of p-type carriers at 300 K is obtained because of their very low value of <em>κ</em><small><sub>l</sub></small> and high power factor. Our theoretical investigation predicts that these monolayers can be potential candidates for fabricating highly efficient thermoelectric power generators.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 42\",\"pages\":\" 27163-27175\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/cp/d4cp02750g\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cp/d4cp02750g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
如今,人们亟需高效、可持续的能源资源来应对环境恶化和能源危机。我们通过第一性原理模拟分析了二维(2D)BiSbTeX2(X = S、Se 和 Te)和 Janus BiSbTeXY(X/Y = S、Se 和 Te)单层的电子、机械和热电(TE)特性。这些单层的动态稳定性和热稳定性已分别通过声子频散谱和非初始分子动力学(AIMD)模拟得到证实。通过施加单轴和双轴应变,可以调整这些单层的带状结构。为了更精确地计算散射率,我们采用了电子-声子耦合(EPC)和自旋轨道耦合效应来计算传输特性。对于 p(n) 型载流子,预测这些单层的功率因数高达 2.08 × 10-3 W m-1 K-2,在 300 K 时为 (0.47 × 10-3 W m-1 K-2)。我们的理论研究预测,这些单层材料可能成为制造高效热电发电机的潜在候选材料。
Two-dimensional BiSbTeX2 (X = S, Se, Te) and their Janus monolayers as efficient thermoelectric materials†
Today, there is a huge need for highly efficient and sustainable energy resources to tackle environmental degradation and energy crisis. We have analyzed the electronic, mechanical and thermoelectric (TE) characteristics of two-dimensional (2D) BiSbTeX2 (X = S, Se and Te) and Janus BiSbTeXY (X/Y = S, Se and Te) monolayers by implementing first principles simulations. These monolayers' dynamic stability and thermal stability have been demonstrated through phonon dispersion spectra and ab initio molecular dynamics (AIMD) simulations, respectively. The band structure of these monolayers can be tuned by applying uniaxial and biaxial strains. The investigated lattice thermal conductivity (κl) for these monolayers lies between 0.23 and 0.37 W m−1 K−1 at 300 K. For a more precise calculation of the scattering rate, we implemented electron–phonon coupling (EPC) and spin–orbit coupling effects to calculate the transport properties. For p(n)-type carriers, the power factor of these monolayers is predicted to be as high as 2.08 × 10−3 W m−1 K−2 and (0.47 × 10−3 W m−1 K−2) at 300 K. The higher thermoelectric figure of merit (ZT) of p-type carriers at 300 K is obtained because of their very low value of κl and high power factor. Our theoretical investigation predicts that these monolayers can be potential candidates for fabricating highly efficient thermoelectric power generators.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.