Guoli Liao, Yufei Zhang, Minghui Ye, Yongchao Tang, Zhipeng Wen, Wencheng Du, Xiaoqing Liu, Cheng Chao Li
{"title":"通过限制电双层中自由水的反应性来调节锌沉积方式","authors":"Guoli Liao, Yufei Zhang, Minghui Ye, Yongchao Tang, Zhipeng Wen, Wencheng Du, Xiaoqing Liu, Cheng Chao Li","doi":"10.1002/chem.202403169","DOIUrl":null,"url":null,"abstract":"<p><p>Aqueous Zn ion batteries (AZIBs) are promising candidates of next-generation energy storage devices with high safety and theoretical capacity. However, the irreversibility of metallic Zn anode, attributed to dendrite growth and water decomposition, severely limits the cycling durability of AZIBs and restricts their further development. Herein, a facile surface engineering strategy is put forward to tackle the issue of poor reversibility of the Zn anode. Benzotriazole (BTA) is employed as a functional additive of ZnSO4 electrolyte to confine the reactivity of free water situated in the electric double layer (EDL). Experimental results and theoretical simulation reveal that BTA can preferiencially adsorb onto the Zn surface to uniform Zn2+ ion distribution and alleviate H2O-involved side reactions like hydrogen evolution, and surface passivation. Consequently, in BTA-modulated aqueous electrolyte, the lifespan of the Zn anode is extended from 170 h to 1092 h at 1 mA cm-2/1 mAh cm-2. The reversibility improvement of Zn anode also benefits the cycling durability of full devices including supercapacitors and batteries. Zn||I₂ batteries assembled in as-designed electrolyte witness only 11.3% capacity decay over 17000 cycles at 1 A g-1, far outstripping that observed in ZnSO4 counterpart (~ 4675 cycles).</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulating Zn Deposition Manner by Confining the Reactivity of Free Water in the Electric Double Layer.\",\"authors\":\"Guoli Liao, Yufei Zhang, Minghui Ye, Yongchao Tang, Zhipeng Wen, Wencheng Du, Xiaoqing Liu, Cheng Chao Li\",\"doi\":\"10.1002/chem.202403169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aqueous Zn ion batteries (AZIBs) are promising candidates of next-generation energy storage devices with high safety and theoretical capacity. However, the irreversibility of metallic Zn anode, attributed to dendrite growth and water decomposition, severely limits the cycling durability of AZIBs and restricts their further development. Herein, a facile surface engineering strategy is put forward to tackle the issue of poor reversibility of the Zn anode. Benzotriazole (BTA) is employed as a functional additive of ZnSO4 electrolyte to confine the reactivity of free water situated in the electric double layer (EDL). Experimental results and theoretical simulation reveal that BTA can preferiencially adsorb onto the Zn surface to uniform Zn2+ ion distribution and alleviate H2O-involved side reactions like hydrogen evolution, and surface passivation. Consequently, in BTA-modulated aqueous electrolyte, the lifespan of the Zn anode is extended from 170 h to 1092 h at 1 mA cm-2/1 mAh cm-2. The reversibility improvement of Zn anode also benefits the cycling durability of full devices including supercapacitors and batteries. Zn||I₂ batteries assembled in as-designed electrolyte witness only 11.3% capacity decay over 17000 cycles at 1 A g-1, far outstripping that observed in ZnSO4 counterpart (~ 4675 cycles).</p>\",\"PeriodicalId\":144,\"journal\":{\"name\":\"Chemistry - A European Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - A European Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/chem.202403169\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202403169","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Regulating Zn Deposition Manner by Confining the Reactivity of Free Water in the Electric Double Layer.
Aqueous Zn ion batteries (AZIBs) are promising candidates of next-generation energy storage devices with high safety and theoretical capacity. However, the irreversibility of metallic Zn anode, attributed to dendrite growth and water decomposition, severely limits the cycling durability of AZIBs and restricts their further development. Herein, a facile surface engineering strategy is put forward to tackle the issue of poor reversibility of the Zn anode. Benzotriazole (BTA) is employed as a functional additive of ZnSO4 electrolyte to confine the reactivity of free water situated in the electric double layer (EDL). Experimental results and theoretical simulation reveal that BTA can preferiencially adsorb onto the Zn surface to uniform Zn2+ ion distribution and alleviate H2O-involved side reactions like hydrogen evolution, and surface passivation. Consequently, in BTA-modulated aqueous electrolyte, the lifespan of the Zn anode is extended from 170 h to 1092 h at 1 mA cm-2/1 mAh cm-2. The reversibility improvement of Zn anode also benefits the cycling durability of full devices including supercapacitors and batteries. Zn||I₂ batteries assembled in as-designed electrolyte witness only 11.3% capacity decay over 17000 cycles at 1 A g-1, far outstripping that observed in ZnSO4 counterpart (~ 4675 cycles).
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world.
All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times.
The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems.
Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.