Savan S Bhalodiya, Mehul P Parmar, Chirag D Patel, Subham G Patel, Disha P Vala, Nandhakumar Suresh, Bhuvaneshwari Jayachandran, Madan Kumar Arumugam, Mahesh Narayan, Hitendra M Patel
{"title":"乙酸驱动的 4,7-二氢-[1,2,3]噻二唑并[5,4-b]吡啶-6-羧酰胺的单锅合成及药理评价。","authors":"Savan S Bhalodiya, Mehul P Parmar, Chirag D Patel, Subham G Patel, Disha P Vala, Nandhakumar Suresh, Bhuvaneshwari Jayachandran, Madan Kumar Arumugam, Mahesh Narayan, Hitendra M Patel","doi":"10.1002/cmdc.202400595","DOIUrl":null,"url":null,"abstract":"<p><p>A diverse set of 4,7-dihydro-[1,2,3]thiadiazolo[5,4-b]pyridine-6-carboxamides 4(a-o) was synthesized via a one-pot reaction of 5-amino-[1,2,3]thiadiazole, various aromatic aldehydes, and different acetoacetanilides, using glacial acetic acid. The resulting compounds were obtained in moderate to good yields. All the newly synthesized compounds were evaluated for their antimicrobial activity. Among them, compound 4 e demonstrated superior efficacy against the Salinivibrio proteolyticus strain of Gram-negative bacteria compared to ciprofloxacin. Compound 4 d exhibited the highest potency against the fungal strain Candida albicans, surpassing amphotericin B. The physicochemical characteristics of 4 d and 4 e were assessed. According to docking analysis, DHTDAPy 4 e shows a higher binding affinity of -7.2 kcal/mol in the binding cavity of the receptor. These findings illustrate the safety, tolerability, and potency of the newly synthesized DHTDAPy compounds against fungal and bacterial infections.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202400595"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acetic Acid-Driven One-Pot Synthesis of 4,7-dihydro-[1,2,3]thiadiazolo[5,4-b]pyridine-6-carboxamides and Pharmacological Evaluations.\",\"authors\":\"Savan S Bhalodiya, Mehul P Parmar, Chirag D Patel, Subham G Patel, Disha P Vala, Nandhakumar Suresh, Bhuvaneshwari Jayachandran, Madan Kumar Arumugam, Mahesh Narayan, Hitendra M Patel\",\"doi\":\"10.1002/cmdc.202400595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A diverse set of 4,7-dihydro-[1,2,3]thiadiazolo[5,4-b]pyridine-6-carboxamides 4(a-o) was synthesized via a one-pot reaction of 5-amino-[1,2,3]thiadiazole, various aromatic aldehydes, and different acetoacetanilides, using glacial acetic acid. The resulting compounds were obtained in moderate to good yields. All the newly synthesized compounds were evaluated for their antimicrobial activity. Among them, compound 4 e demonstrated superior efficacy against the Salinivibrio proteolyticus strain of Gram-negative bacteria compared to ciprofloxacin. Compound 4 d exhibited the highest potency against the fungal strain Candida albicans, surpassing amphotericin B. The physicochemical characteristics of 4 d and 4 e were assessed. According to docking analysis, DHTDAPy 4 e shows a higher binding affinity of -7.2 kcal/mol in the binding cavity of the receptor. These findings illustrate the safety, tolerability, and potency of the newly synthesized DHTDAPy compounds against fungal and bacterial infections.</p>\",\"PeriodicalId\":147,\"journal\":{\"name\":\"ChemMedChem\",\"volume\":\" \",\"pages\":\"e202400595\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemMedChem\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/cmdc.202400595\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202400595","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
摘要
以冰乙酸为溶剂,通过 5-氨基[1,2,3]噻二唑、各种芳香醛和不同的乙酰乙酰苯胺的一锅反应,合成了一系列不同的 4,7-二氢-[1,2,3]噻二唑并[5,4-b]吡啶-6-甲酰胺 4(a-o),无需任何催化剂。所得化合物的产率从中等到良好。对所有新合成的化合物进行了抗菌活性评估。其中,与环丙沙星相比,化合物 4e 对革兰氏-(-Ve)-细菌中的溶血性沙林弧菌具有更强的抗菌效果。对 4d 和 4e 的理化特性进行了评估。根据对接分析,DHTDAPy 4e 在受体结合腔中的结合亲和力为 -7.2 kcal moL-1。这些研究结果说明了新合成的 DHTDAPy 对真菌和细菌感染的安全性、耐受性和有效性。
Acetic Acid-Driven One-Pot Synthesis of 4,7-dihydro-[1,2,3]thiadiazolo[5,4-b]pyridine-6-carboxamides and Pharmacological Evaluations.
A diverse set of 4,7-dihydro-[1,2,3]thiadiazolo[5,4-b]pyridine-6-carboxamides 4(a-o) was synthesized via a one-pot reaction of 5-amino-[1,2,3]thiadiazole, various aromatic aldehydes, and different acetoacetanilides, using glacial acetic acid. The resulting compounds were obtained in moderate to good yields. All the newly synthesized compounds were evaluated for their antimicrobial activity. Among them, compound 4 e demonstrated superior efficacy against the Salinivibrio proteolyticus strain of Gram-negative bacteria compared to ciprofloxacin. Compound 4 d exhibited the highest potency against the fungal strain Candida albicans, surpassing amphotericin B. The physicochemical characteristics of 4 d and 4 e were assessed. According to docking analysis, DHTDAPy 4 e shows a higher binding affinity of -7.2 kcal/mol in the binding cavity of the receptor. These findings illustrate the safety, tolerability, and potency of the newly synthesized DHTDAPy compounds against fungal and bacterial infections.
期刊介绍:
Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs.
Contents
ChemMedChem publishes an attractive mixture of:
Full Papers and Communications
Reviews and Minireviews
Patent Reviews
Highlights and Concepts
Book and Multimedia Reviews.