电沉积镍-钨薄膜在酸性介质中的氢气进化反应及利用机器学习进行性能优化。

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2024-10-21 DOI:10.1002/cssc.202400444
Roger de Paz-Castany, Konrad Eiler, Aliona Nicolenco, Maria Lekka, Eva García-Lecina, Guillaume Brunin, Gian-Marco Rignanese, David Waroquiers, Thomas Collet, Annick Hubin, Eva Pellicer
{"title":"电沉积镍-钨薄膜在酸性介质中的氢气进化反应及利用机器学习进行性能优化。","authors":"Roger de Paz-Castany, Konrad Eiler, Aliona Nicolenco, Maria Lekka, Eva García-Lecina, Guillaume Brunin, Gian-Marco Rignanese, David Waroquiers, Thomas Collet, Annick Hubin, Eva Pellicer","doi":"10.1002/cssc.202400444","DOIUrl":null,"url":null,"abstract":"<p><p>Ni-W alloy films were electrodeposited from a gluconate aqueous bath at pH=5.0, at varying current densities and temperatures. While there is little to no difference in composition, i. e., all films possess ~12 at.% W, their activity at hydrogen evolution reaction (HER) in acidic medium is greatly influenced by differences in surface morphology. The kinetics of HER in 0.5 M H<sub>2</sub>SO<sub>4</sub> indicates that the best performing film was obtained at a current density of -4.8 mA/cm<sup>2</sup> and 50 °C. The Tafel slopes (b) and the overpotentials at a geometric current density of -10 mA/cm<sup>2</sup> (η<sub>10</sub>) obtained for 200 cycles of linear sweep voltammetry (LSV) from a set of films deposited using different parameters were fed into a machine learning algorithm to predict optimum deposition conditions to minimize b, η<sub>10</sub>, and the degradation of samples over time. The optimum deposition conditions predicted by the machine learning model led to the electrodeposition of Ni-W films with superior performance, exhibiting b of 33-45 mV/dec and an η<sub>10</sub> of 0.09-0.10 V after 200 LSVs.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202400444"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen Evolution Reaction of Electrodeposited Ni-W Films in Acidic Medium and Performance Optimization Using Machine Learning.\",\"authors\":\"Roger de Paz-Castany, Konrad Eiler, Aliona Nicolenco, Maria Lekka, Eva García-Lecina, Guillaume Brunin, Gian-Marco Rignanese, David Waroquiers, Thomas Collet, Annick Hubin, Eva Pellicer\",\"doi\":\"10.1002/cssc.202400444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ni-W alloy films were electrodeposited from a gluconate aqueous bath at pH=5.0, at varying current densities and temperatures. While there is little to no difference in composition, i. e., all films possess ~12 at.% W, their activity at hydrogen evolution reaction (HER) in acidic medium is greatly influenced by differences in surface morphology. The kinetics of HER in 0.5 M H<sub>2</sub>SO<sub>4</sub> indicates that the best performing film was obtained at a current density of -4.8 mA/cm<sup>2</sup> and 50 °C. The Tafel slopes (b) and the overpotentials at a geometric current density of -10 mA/cm<sup>2</sup> (η<sub>10</sub>) obtained for 200 cycles of linear sweep voltammetry (LSV) from a set of films deposited using different parameters were fed into a machine learning algorithm to predict optimum deposition conditions to minimize b, η<sub>10</sub>, and the degradation of samples over time. The optimum deposition conditions predicted by the machine learning model led to the electrodeposition of Ni-W films with superior performance, exhibiting b of 33-45 mV/dec and an η<sub>10</sub> of 0.09-0.10 V after 200 LSVs.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202400444\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202400444\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202400444","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在不同的电流密度和温度下,从 pH = 5.0 的葡萄糖酸盐水浴中电沉积出 Ni-W 合金薄膜。虽然薄膜的成分几乎没有差异,即所有薄膜都含有约 12% 的 W,但它们在酸性介质中的氢进化反应(HER)活性却受到表面形态差异的极大影响。0.5 M H2SO4 中的氢进化反应动力学表明,在电流密度为 -4.8 mA/cm2 和温度为 50 ºC 时,薄膜的性能最佳。将一组使用不同参数沉积的薄膜在 200 个线性扫描伏安 (LSV) 周期中获得的塔菲尔斜率 (b) 和几何电流密度为 -10 mA/cm2 (η10) 时的过电位输入机器学习算法,以预测最佳沉积条件,从而使 b、η10 和样品随时间的降解最小化。根据机器学习模型预测的最佳沉积条件,电沉积出的镍-钨薄膜性能优越,在 200 LSV 之后,与 RHE 相比,b 值为 33-45 mV/dec,η10 为 0.09-0.10 V。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrogen Evolution Reaction of Electrodeposited Ni-W Films in Acidic Medium and Performance Optimization Using Machine Learning.

Ni-W alloy films were electrodeposited from a gluconate aqueous bath at pH=5.0, at varying current densities and temperatures. While there is little to no difference in composition, i. e., all films possess ~12 at.% W, their activity at hydrogen evolution reaction (HER) in acidic medium is greatly influenced by differences in surface morphology. The kinetics of HER in 0.5 M H2SO4 indicates that the best performing film was obtained at a current density of -4.8 mA/cm2 and 50 °C. The Tafel slopes (b) and the overpotentials at a geometric current density of -10 mA/cm210) obtained for 200 cycles of linear sweep voltammetry (LSV) from a set of films deposited using different parameters were fed into a machine learning algorithm to predict optimum deposition conditions to minimize b, η10, and the degradation of samples over time. The optimum deposition conditions predicted by the machine learning model led to the electrodeposition of Ni-W films with superior performance, exhibiting b of 33-45 mV/dec and an η10 of 0.09-0.10 V after 200 LSVs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Covalent Organic Frameworks with Regulated Water Adsorption Sites for Efficient Cooling of Electronics. A TEMPO-N3 Complex Enables the Electrochemical C-H Azidation of N-Heterocycles through the Cleavage of Alkoxyamines. PEI-templated ZIF-8 nanoparticles impart the NF membrane with high Mg2+/Li+ separation performance. Green Electrochemical Point-of-Care Devices: Transient Materials and Sustainable Fabrication Methods. Metal-free N, P-Codoped Carbon for Syngas Production with Tunable Composition via CO2 Electrolysis: Addressing the Competition Between CO2 Reduction and H2 Evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1