Charlotte Mase, Maxime Sueur, Hélène Lavanant, Christopher Paul Rüger, Pierre Giusti, Carlos Afonso
{"title":"利用傅立叶变换质谱法表征复杂有机混合物的离子源互补性:综述。","authors":"Charlotte Mase, Maxime Sueur, Hélène Lavanant, Christopher Paul Rüger, Pierre Giusti, Carlos Afonso","doi":"10.1002/mas.21910","DOIUrl":null,"url":null,"abstract":"<p><p>Complex organic mixtures are found in many areas of research, such as energy, environment, health, planetology, and cultural heritage, to name but a few. However, due to their complex chemical composition, which holds an extensive potential of information at the molecular level, their molecular characterization is challenging. In mass spectrometry, the ionization step is the key step, as it determines which species will be detected. This review presents an overview of the main ionization sources employed to characterize these kinds of samples in Fourier transform mass spectrometry (FT-MS), namely electrospray (ESI), atmospheric pressure photoionization (APPI), atmospheric pressure chemical ionization (APCI), atmospheric pressure laser ionization (APLI), and (matrix-assisted) laser desorption ionization ((MA)LDI), and their complementarity in the characterization of complex organic mixtures. First, the ionization techniques are examined in the common direct introduction (DI) usage. Second, these approaches are discussed in the context of coupling chromatographic techniques such as gas chromatography, liquid chromatography, and supercritical fluid chromatography.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ion Source Complementarity for Characterization of Complex Organic Mixtures Using Fourier Transform Mass Spectrometry: A Review.\",\"authors\":\"Charlotte Mase, Maxime Sueur, Hélène Lavanant, Christopher Paul Rüger, Pierre Giusti, Carlos Afonso\",\"doi\":\"10.1002/mas.21910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Complex organic mixtures are found in many areas of research, such as energy, environment, health, planetology, and cultural heritage, to name but a few. However, due to their complex chemical composition, which holds an extensive potential of information at the molecular level, their molecular characterization is challenging. In mass spectrometry, the ionization step is the key step, as it determines which species will be detected. This review presents an overview of the main ionization sources employed to characterize these kinds of samples in Fourier transform mass spectrometry (FT-MS), namely electrospray (ESI), atmospheric pressure photoionization (APPI), atmospheric pressure chemical ionization (APCI), atmospheric pressure laser ionization (APLI), and (matrix-assisted) laser desorption ionization ((MA)LDI), and their complementarity in the characterization of complex organic mixtures. First, the ionization techniques are examined in the common direct introduction (DI) usage. Second, these approaches are discussed in the context of coupling chromatographic techniques such as gas chromatography, liquid chromatography, and supercritical fluid chromatography.</p>\",\"PeriodicalId\":206,\"journal\":{\"name\":\"Mass Spectrometry Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mass Spectrometry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/mas.21910\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mass Spectrometry Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/mas.21910","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
Ion Source Complementarity for Characterization of Complex Organic Mixtures Using Fourier Transform Mass Spectrometry: A Review.
Complex organic mixtures are found in many areas of research, such as energy, environment, health, planetology, and cultural heritage, to name but a few. However, due to their complex chemical composition, which holds an extensive potential of information at the molecular level, their molecular characterization is challenging. In mass spectrometry, the ionization step is the key step, as it determines which species will be detected. This review presents an overview of the main ionization sources employed to characterize these kinds of samples in Fourier transform mass spectrometry (FT-MS), namely electrospray (ESI), atmospheric pressure photoionization (APPI), atmospheric pressure chemical ionization (APCI), atmospheric pressure laser ionization (APLI), and (matrix-assisted) laser desorption ionization ((MA)LDI), and their complementarity in the characterization of complex organic mixtures. First, the ionization techniques are examined in the common direct introduction (DI) usage. Second, these approaches are discussed in the context of coupling chromatographic techniques such as gas chromatography, liquid chromatography, and supercritical fluid chromatography.
期刊介绍:
The aim of the journal Mass Spectrometry Reviews is to publish well-written reviews in selected topics in the various sub-fields of mass spectrometry as a means to summarize the research that has been performed in that area, to focus attention of other researchers, to critically review the published material, and to stimulate further research in that area.
The scope of the published reviews include, but are not limited to topics, such as theoretical treatments, instrumental design, ionization methods, analyzers, detectors, application to the qualitative and quantitative analysis of various compounds or elements, basic ion chemistry and structure studies, ion energetic studies, and studies on biomolecules, polymers, etc.