{"title":"将聚氧化金属盐和二氧化钛均匀集成到皱褶层中。","authors":"Bilal Akram, Syeda Sundas Musawar, Sanam Mumtaz, Fozia Nazir, Palwisha Umer, Qingda Liu","doi":"10.1002/smtd.202401377","DOIUrl":null,"url":null,"abstract":"<p><p>The crumpling and buckling in nanosheets are anticipated to provide new characteristics that could not be observed in ideal flat layers. However, the rigid lattice structure of inorganic metal oxides limits their assembly into well-defined crumpled layers. Here, this study demonstrates that at the sub-nm scale, polyoxometalates (POMs) clusters having well-defined structures can intercede during the nucleation process of titania and co-assemble with nuclei to form uniform, large-sized crumpled binary 2D layers with a thickness of 2 nm. The obtained crumpled layers are then used as a support material to immobilize Pd nanoclusters with an average size of 2 nm. Pd-immobilized crumpled layers are employed as heterogeneous catalysts for the partial hydrogenation of acetylene. This structurally and compositionally unique heterogeneous catalyst manifests exceptional selectivity to cis-alkene with almost 100% yield as compared to commercially available titania which only exhibits 10% diphenylacetylene conversion and 42% selectivity in the given period of time.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401377"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homogeneous Integration of Polyoxometalates and Titania into Crumpled Layers.\",\"authors\":\"Bilal Akram, Syeda Sundas Musawar, Sanam Mumtaz, Fozia Nazir, Palwisha Umer, Qingda Liu\",\"doi\":\"10.1002/smtd.202401377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The crumpling and buckling in nanosheets are anticipated to provide new characteristics that could not be observed in ideal flat layers. However, the rigid lattice structure of inorganic metal oxides limits their assembly into well-defined crumpled layers. Here, this study demonstrates that at the sub-nm scale, polyoxometalates (POMs) clusters having well-defined structures can intercede during the nucleation process of titania and co-assemble with nuclei to form uniform, large-sized crumpled binary 2D layers with a thickness of 2 nm. The obtained crumpled layers are then used as a support material to immobilize Pd nanoclusters with an average size of 2 nm. Pd-immobilized crumpled layers are employed as heterogeneous catalysts for the partial hydrogenation of acetylene. This structurally and compositionally unique heterogeneous catalyst manifests exceptional selectivity to cis-alkene with almost 100% yield as compared to commercially available titania which only exhibits 10% diphenylacetylene conversion and 42% selectivity in the given period of time.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2401377\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202401377\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401377","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Homogeneous Integration of Polyoxometalates and Titania into Crumpled Layers.
The crumpling and buckling in nanosheets are anticipated to provide new characteristics that could not be observed in ideal flat layers. However, the rigid lattice structure of inorganic metal oxides limits their assembly into well-defined crumpled layers. Here, this study demonstrates that at the sub-nm scale, polyoxometalates (POMs) clusters having well-defined structures can intercede during the nucleation process of titania and co-assemble with nuclei to form uniform, large-sized crumpled binary 2D layers with a thickness of 2 nm. The obtained crumpled layers are then used as a support material to immobilize Pd nanoclusters with an average size of 2 nm. Pd-immobilized crumpled layers are employed as heterogeneous catalysts for the partial hydrogenation of acetylene. This structurally and compositionally unique heterogeneous catalyst manifests exceptional selectivity to cis-alkene with almost 100% yield as compared to commercially available titania which only exhibits 10% diphenylacetylene conversion and 42% selectivity in the given period of time.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.