通过铂基无线纳米孔电极原位制氧,实现单细胞操作。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2024-10-21 DOI:10.1002/smtd.202401448
Ke-Le Chen, Ru-Jia Yu, Ming-Kang Li, Hao-Wei Wang, Bao-Kang Xie, Shao-Chuang Liu, Yi-Lun Ying, Yi-Tao Long
{"title":"通过铂基无线纳米孔电极原位制氧,实现单细胞操作。","authors":"Ke-Le Chen, Ru-Jia Yu, Ming-Kang Li, Hao-Wei Wang, Bao-Kang Xie, Shao-Chuang Liu, Yi-Lun Ying, Yi-Tao Long","doi":"10.1002/smtd.202401448","DOIUrl":null,"url":null,"abstract":"<p><p>Oxygen production within human cells plays a critical role in cellular metabolism and is implicated in various diseases, including cancer. Investigating cellular heterogeneity under oxygen stimulation is crucial for elucidating disease mechanisms and advancing early therapeutic design. In this study, the platinum-based wireless nanopore electrode (WNE) with a diameter of ≈200 nm is employed as a powerful tool to produce oxygen molecules near the cell nucleus. The oxygen production can be quantitatively controlled by adjusting the applied voltage. Through delivering oxygen near the cancer cell nucleus, this technique shows the capacity to alleviate the hypoxia microenvironment, a key factor in chemotherapy resistance. Furthermore, by modulating oxygen levels within individual living cells and delivering chemotherapeutic agents to the cancer cell nucleus, this approach offers significant potential for single-cell manipulation and the investigation of cellular heterogeneity under oxygen stimulation.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401448"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Oxygen Generation via a Platinum-Based Wireless Nanopore Electrode for Single-Cell Manipulation.\",\"authors\":\"Ke-Le Chen, Ru-Jia Yu, Ming-Kang Li, Hao-Wei Wang, Bao-Kang Xie, Shao-Chuang Liu, Yi-Lun Ying, Yi-Tao Long\",\"doi\":\"10.1002/smtd.202401448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oxygen production within human cells plays a critical role in cellular metabolism and is implicated in various diseases, including cancer. Investigating cellular heterogeneity under oxygen stimulation is crucial for elucidating disease mechanisms and advancing early therapeutic design. In this study, the platinum-based wireless nanopore electrode (WNE) with a diameter of ≈200 nm is employed as a powerful tool to produce oxygen molecules near the cell nucleus. The oxygen production can be quantitatively controlled by adjusting the applied voltage. Through delivering oxygen near the cancer cell nucleus, this technique shows the capacity to alleviate the hypoxia microenvironment, a key factor in chemotherapy resistance. Furthermore, by modulating oxygen levels within individual living cells and delivering chemotherapeutic agents to the cancer cell nucleus, this approach offers significant potential for single-cell manipulation and the investigation of cellular heterogeneity under oxygen stimulation.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2401448\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202401448\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401448","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

人体细胞内的氧气产生在细胞新陈代谢中起着关键作用,并与包括癌症在内的多种疾病有关。研究氧刺激下的细胞异质性对于阐明疾病机制和推进早期治疗设计至关重要。在这项研究中,直径≈200 纳米的铂基无线纳米孔电极(WNE)被用作在细胞核附近产生氧分子的有力工具。通过调节外加电压,可以定量控制氧的产生。通过向癌细胞核附近输送氧气,这项技术显示出缓解缺氧微环境的能力,而缺氧微环境是导致化疗耐药性的关键因素。此外,通过调节单个活细胞内的氧含量并向癌细胞核输送化疗药物,这种方法为单细胞操作和研究氧刺激下的细胞异质性提供了巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In Situ Oxygen Generation via a Platinum-Based Wireless Nanopore Electrode for Single-Cell Manipulation.

Oxygen production within human cells plays a critical role in cellular metabolism and is implicated in various diseases, including cancer. Investigating cellular heterogeneity under oxygen stimulation is crucial for elucidating disease mechanisms and advancing early therapeutic design. In this study, the platinum-based wireless nanopore electrode (WNE) with a diameter of ≈200 nm is employed as a powerful tool to produce oxygen molecules near the cell nucleus. The oxygen production can be quantitatively controlled by adjusting the applied voltage. Through delivering oxygen near the cancer cell nucleus, this technique shows the capacity to alleviate the hypoxia microenvironment, a key factor in chemotherapy resistance. Furthermore, by modulating oxygen levels within individual living cells and delivering chemotherapeutic agents to the cancer cell nucleus, this approach offers significant potential for single-cell manipulation and the investigation of cellular heterogeneity under oxygen stimulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
Oxygen Vacancy Engineering of TiNb2O7 Modified PE Separator Toward Dendrite-Free Lithium Metal Battery. Analysis of Metal-Organic Framework and Polyamide Interfaces in Membranes for Water Treatment and Antibacterial Applications. Dual-Passivation Strategy of Bulk and Surface Enables Highly Efficient and Stable Inverted Perovskite Solar Cells. Electrochemical Exfoliation of Large Antioxidative MXene Flakes for Polymeric Fire Safety. Platelet Activation-Induced In Situ Trapping Metastatic Tumor Cells Strategy for Post-Surgery Tumor Recurrence Immunochemotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1