{"title":"铂纳米酶载体溶解微针清除 ROS 并促进雄激素性脱发治疗的血统发展","authors":"Weitong Hu, Shuhan Shi, Yihua Xu, Yunting Zhang, Jingyi Hu, Qiong Bian, Xiaolu Ma, Yuxian Ye, Shengfei Yang, Xiaoxia Sheng, Guang Liang, Tianyuan Zhang, Haibin Wu, Jianqing Gao","doi":"10.1002/smtd.202401176","DOIUrl":null,"url":null,"abstract":"<p><p>Androgenetic alopecia (AGA) is a prevalent issue affecting the physical and mental health of individuals but with fewer current treatments. Platinum nanozymes (PtNZs) are known for their excellent ability to reduce and modulate the high oxidative stress environment in AGA pathology. And microneedles are used to overcome the skin barrier due to the poor permeability of PtNZs. Herein, dissolving microneedles loaded with PtNZs (Pt-MNs) are designed and successfully induced hair regeneration in the AGA model. Pt-MNs possessed adequate mechanical strength to breach the skin barrier for effective PtNZs delivery. In vivo, PtNZs first reduced reactive oxygen species (ROS) to oxygen, which recovered the AGA pathological environment. And the oxygen then increased oxidative phosphorylation, promoting the differentiation of hair follicle stem cells to achieve hair regeneration. The group treated with Pt-MNs with a dosing frequency of once every three days achieved faster hair growth than the daily application of the positive drug minoxidil. Further safety experiments showed that the application of Pt-MNs locally opened temporary and recoverable skin channels, with no retention of Pt in major organs, indicating high safety. In conclusion, this study indicated the potential of Pt-MNs as an effective method for treating AGA.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Platinum Nanozyme-Loaded Dissolving Microneedles Scavenge ROS and Promote Lineage Progression for Androgenetic Alopecia Treatment.\",\"authors\":\"Weitong Hu, Shuhan Shi, Yihua Xu, Yunting Zhang, Jingyi Hu, Qiong Bian, Xiaolu Ma, Yuxian Ye, Shengfei Yang, Xiaoxia Sheng, Guang Liang, Tianyuan Zhang, Haibin Wu, Jianqing Gao\",\"doi\":\"10.1002/smtd.202401176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Androgenetic alopecia (AGA) is a prevalent issue affecting the physical and mental health of individuals but with fewer current treatments. Platinum nanozymes (PtNZs) are known for their excellent ability to reduce and modulate the high oxidative stress environment in AGA pathology. And microneedles are used to overcome the skin barrier due to the poor permeability of PtNZs. Herein, dissolving microneedles loaded with PtNZs (Pt-MNs) are designed and successfully induced hair regeneration in the AGA model. Pt-MNs possessed adequate mechanical strength to breach the skin barrier for effective PtNZs delivery. In vivo, PtNZs first reduced reactive oxygen species (ROS) to oxygen, which recovered the AGA pathological environment. And the oxygen then increased oxidative phosphorylation, promoting the differentiation of hair follicle stem cells to achieve hair regeneration. The group treated with Pt-MNs with a dosing frequency of once every three days achieved faster hair growth than the daily application of the positive drug minoxidil. Further safety experiments showed that the application of Pt-MNs locally opened temporary and recoverable skin channels, with no retention of Pt in major organs, indicating high safety. In conclusion, this study indicated the potential of Pt-MNs as an effective method for treating AGA.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202401176\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401176","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
雄激素性脱发(AGA)是一个影响个人身心健康的普遍问题,但目前的治疗方法较少。众所周知,铂纳米酶(PtNZs)具有降低和调节 AGA 病理学中高氧化应激环境的卓越能力。由于 PtNZs 的渗透性较差,微针可用于克服皮肤屏障。本文设计了负载铂氮化合物的可溶解微针(Pt-MNs),并成功诱导了AGA模型中的毛发再生。Pt-MNs具有足够的机械强度,可突破皮肤屏障,有效输送PtNZs。在体内,PtNZs 首先将活性氧(ROS)还原成氧气,恢复了 AGA 的病理环境。然后,氧气增加了氧化磷酸化,促进了毛囊干细胞的分化,实现了毛发再生。与每天服用阳性药物米诺西地相比,每三天服用一次铂-锰的治疗组头发生长速度更快。进一步的安全性实验表明,在局部应用铂族金属络氨酸可打开暂时的、可恢复的皮肤通道,主要器官中没有铂的残留,这表明铂族金属络氨酸具有很高的安全性。总之,这项研究表明,铂-金属萘有可能成为治疗 AGA 的一种有效方法。
Platinum Nanozyme-Loaded Dissolving Microneedles Scavenge ROS and Promote Lineage Progression for Androgenetic Alopecia Treatment.
Androgenetic alopecia (AGA) is a prevalent issue affecting the physical and mental health of individuals but with fewer current treatments. Platinum nanozymes (PtNZs) are known for their excellent ability to reduce and modulate the high oxidative stress environment in AGA pathology. And microneedles are used to overcome the skin barrier due to the poor permeability of PtNZs. Herein, dissolving microneedles loaded with PtNZs (Pt-MNs) are designed and successfully induced hair regeneration in the AGA model. Pt-MNs possessed adequate mechanical strength to breach the skin barrier for effective PtNZs delivery. In vivo, PtNZs first reduced reactive oxygen species (ROS) to oxygen, which recovered the AGA pathological environment. And the oxygen then increased oxidative phosphorylation, promoting the differentiation of hair follicle stem cells to achieve hair regeneration. The group treated with Pt-MNs with a dosing frequency of once every three days achieved faster hair growth than the daily application of the positive drug minoxidil. Further safety experiments showed that the application of Pt-MNs locally opened temporary and recoverable skin channels, with no retention of Pt in major organs, indicating high safety. In conclusion, this study indicated the potential of Pt-MNs as an effective method for treating AGA.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.