{"title":"单晶六方氮化硼上高品质过渡金属二钙化物的范德华外延。","authors":"Jidong Huang, Junhua Meng, Huabo Yang, Ji Jiang, Zhengchang Xia, Siyu Zhang, Libin Zeng, Zhigang Yin, Xingwang Zhang","doi":"10.1002/smtd.202401296","DOIUrl":null,"url":null,"abstract":"<p><p>Van der Waals (vdW) heterostructures comprising of transition metal dichalcogenides (TMDs) and hexagonal boron nitride (h-BN) are promising building blocks for novel 2D devices. The vdW epitaxy provides a straightforward integration method for fabricating high-quality TMDs/h-BN vertical heterostructures. In this work, the vdW epitaxy of high-quality single-crystal HfSe<sub>2</sub> on epitaxial h-BN/sapphire substrates by chemical vapor deposition is demonstrated. The epitaxial HfSe<sub>2</sub> layers exhibit a uniform and atomically sharp interface with the underlying h-BN template, and the epitaxial relationship between HfSe<sub>2</sub> and h-BN/sapphire is determined to HfSe<sub>2</sub> (0001)[1 <math> <semantics><mover><mn>2</mn> <mo>¯</mo></mover> <annotation>${\\mathrm{\\bar{2}}}$</annotation></semantics> </math> 10]//h-BN (0001)[1 <math> <semantics><mover><mn>1</mn> <mo>¯</mo></mover> <annotation>${\\mathrm{\\bar{1}}}$</annotation></semantics> </math> 00]//sapphire (0001)[1 <math> <semantics><mover><mn>1</mn> <mo>¯</mo></mover> <annotation>${\\mathrm{\\bar{1}}}$</annotation></semantics> </math> 00]. Impressively, the full width at half maximum of the rocking curve for the epitaxial HfSe<sub>2</sub> layer on single-crystal h-BN is as narrow as 9.6 arcmin, indicating an extremely high degree of out-plane orientation and high crystallinity. Benefitting from the high crystalline quality of HfSe<sub>2</sub> epilayers and the weak interfacial scattering of HfSe<sub>2</sub>/h-BN, the photodetector fabricated from the vdW epitaxial HfSe<sub>2</sub> on single-crystal h-BN shows the best performance with an on/off ratio of 1 × 10<sup>4</sup> and a responsivity up to 43 mA W<sup>-1</sup>. Furthermore, the vdW epitaxy of other TMDs such as HfS<sub>2</sub>, ZrS<sub>2</sub>, and ZrSe<sub>2</sub> is also experimentally demonstrated on single-crystal h-BN, suggesting the broad applicability of the h-BN template for the vdW epitaxy.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401296"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Van der Waals Epitaxy of High-Quality Transition Metal Dichalcogenides on Single-Crystal Hexagonal Boron Nitride.\",\"authors\":\"Jidong Huang, Junhua Meng, Huabo Yang, Ji Jiang, Zhengchang Xia, Siyu Zhang, Libin Zeng, Zhigang Yin, Xingwang Zhang\",\"doi\":\"10.1002/smtd.202401296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Van der Waals (vdW) heterostructures comprising of transition metal dichalcogenides (TMDs) and hexagonal boron nitride (h-BN) are promising building blocks for novel 2D devices. The vdW epitaxy provides a straightforward integration method for fabricating high-quality TMDs/h-BN vertical heterostructures. In this work, the vdW epitaxy of high-quality single-crystal HfSe<sub>2</sub> on epitaxial h-BN/sapphire substrates by chemical vapor deposition is demonstrated. The epitaxial HfSe<sub>2</sub> layers exhibit a uniform and atomically sharp interface with the underlying h-BN template, and the epitaxial relationship between HfSe<sub>2</sub> and h-BN/sapphire is determined to HfSe<sub>2</sub> (0001)[1 <math> <semantics><mover><mn>2</mn> <mo>¯</mo></mover> <annotation>${\\\\mathrm{\\\\bar{2}}}$</annotation></semantics> </math> 10]//h-BN (0001)[1 <math> <semantics><mover><mn>1</mn> <mo>¯</mo></mover> <annotation>${\\\\mathrm{\\\\bar{1}}}$</annotation></semantics> </math> 00]//sapphire (0001)[1 <math> <semantics><mover><mn>1</mn> <mo>¯</mo></mover> <annotation>${\\\\mathrm{\\\\bar{1}}}$</annotation></semantics> </math> 00]. Impressively, the full width at half maximum of the rocking curve for the epitaxial HfSe<sub>2</sub> layer on single-crystal h-BN is as narrow as 9.6 arcmin, indicating an extremely high degree of out-plane orientation and high crystallinity. Benefitting from the high crystalline quality of HfSe<sub>2</sub> epilayers and the weak interfacial scattering of HfSe<sub>2</sub>/h-BN, the photodetector fabricated from the vdW epitaxial HfSe<sub>2</sub> on single-crystal h-BN shows the best performance with an on/off ratio of 1 × 10<sup>4</sup> and a responsivity up to 43 mA W<sup>-1</sup>. Furthermore, the vdW epitaxy of other TMDs such as HfS<sub>2</sub>, ZrS<sub>2</sub>, and ZrSe<sub>2</sub> is also experimentally demonstrated on single-crystal h-BN, suggesting the broad applicability of the h-BN template for the vdW epitaxy.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2401296\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202401296\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401296","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Van der Waals Epitaxy of High-Quality Transition Metal Dichalcogenides on Single-Crystal Hexagonal Boron Nitride.
Van der Waals (vdW) heterostructures comprising of transition metal dichalcogenides (TMDs) and hexagonal boron nitride (h-BN) are promising building blocks for novel 2D devices. The vdW epitaxy provides a straightforward integration method for fabricating high-quality TMDs/h-BN vertical heterostructures. In this work, the vdW epitaxy of high-quality single-crystal HfSe2 on epitaxial h-BN/sapphire substrates by chemical vapor deposition is demonstrated. The epitaxial HfSe2 layers exhibit a uniform and atomically sharp interface with the underlying h-BN template, and the epitaxial relationship between HfSe2 and h-BN/sapphire is determined to HfSe2 (0001)[1 10]//h-BN (0001)[1 00]//sapphire (0001)[1 00]. Impressively, the full width at half maximum of the rocking curve for the epitaxial HfSe2 layer on single-crystal h-BN is as narrow as 9.6 arcmin, indicating an extremely high degree of out-plane orientation and high crystallinity. Benefitting from the high crystalline quality of HfSe2 epilayers and the weak interfacial scattering of HfSe2/h-BN, the photodetector fabricated from the vdW epitaxial HfSe2 on single-crystal h-BN shows the best performance with an on/off ratio of 1 × 104 and a responsivity up to 43 mA W-1. Furthermore, the vdW epitaxy of other TMDs such as HfS2, ZrS2, and ZrSe2 is also experimentally demonstrated on single-crystal h-BN, suggesting the broad applicability of the h-BN template for the vdW epitaxy.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.