3,3'-二甲氧基-4,4'-二羟基二苯乙烯三唑通过抑制炎症和下调 TGF-b 信号通路对肺纤维化的预防作用

IF 0.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Doklady Biochemistry and Biophysics Pub Date : 2024-10-11 DOI:10.1134/S1607672924600350
Yanping Yang, Lianjun Lin, Shanshan Zhang
{"title":"3,3'-二甲氧基-4,4'-二羟基二苯乙烯三唑通过抑制炎症和下调 TGF-b 信号通路对肺纤维化的预防作用","authors":"Yanping Yang, Lianjun Lin, Shanshan Zhang","doi":"10.1134/S1607672924600350","DOIUrl":null,"url":null,"abstract":"<p><p>In the present study effect of 3,3'-dimethoxy-4,4'-dihydroxy-stilbene triazole (STT) on plmonary fibrosis development was investigated in vitro in primary lung fibroblasts as well as in vivo in mice model. The results demonstrated that STT treatment effectively inhibited the TGF-β1 induced increase in expression of α-SMA and collagen I proteins in PLFs. STT treatment effectively reversed the TGF-β1 induced increase in expression of LOXL2 protein and phosphorylation of Smad2/3 proteins. Treatment of PLFs with STT reversed the TGF-β1-induced increase in expression of NOX4 and suppression of p-AMPK protein. In mice model of pulmonary fibrosis STT treatment significantly inhibited the BLM-mediated decrease in body weight and survival rate. The BLM induced increase in pulmonary index in mice was also effectively inhibited on treatment with STT. Treatment of the mice with STT inhibited the BLM-induced increase in α-SMA and Col I protein expression in pulmonary tissues. The BLM-induced increase in TGF-β1 protein expression in pulmonary tissues of the mice was inhibited on treatment with STT. Treatment with STT effectively promoted the AMPK activation in lung tissues of the BLM administered mice. In summary, the present study demonstrates that STT treatment prevents TGF-β1 induced up-regulation of α-SMA, collagen I, LOXL2 protein expression and targets phosphorylation of Smad2/3 proteins in PLFs. Moreover, it inhibits TGF-β1-induced increase in expression of NOX4 and reverses TGF-β1-mediated suppression in expression of p-AMPK protein. Therefore, STT inhibits fibrosis development in vitro as well as in vivo and therefore can be investigated further as a therapeutic agent for the treatment of lung fibrosis.</p>","PeriodicalId":529,"journal":{"name":"Doklady Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preventive Effect of 3,3'-dimethoxy-4,4'-dihydroxy-stilbene Triazole on Pulmonary Fibrosis through Inhibition of Inflammation and Down-regulation of TGF-b Signaling Pathway.\",\"authors\":\"Yanping Yang, Lianjun Lin, Shanshan Zhang\",\"doi\":\"10.1134/S1607672924600350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the present study effect of 3,3'-dimethoxy-4,4'-dihydroxy-stilbene triazole (STT) on plmonary fibrosis development was investigated in vitro in primary lung fibroblasts as well as in vivo in mice model. The results demonstrated that STT treatment effectively inhibited the TGF-β1 induced increase in expression of α-SMA and collagen I proteins in PLFs. STT treatment effectively reversed the TGF-β1 induced increase in expression of LOXL2 protein and phosphorylation of Smad2/3 proteins. Treatment of PLFs with STT reversed the TGF-β1-induced increase in expression of NOX4 and suppression of p-AMPK protein. In mice model of pulmonary fibrosis STT treatment significantly inhibited the BLM-mediated decrease in body weight and survival rate. The BLM induced increase in pulmonary index in mice was also effectively inhibited on treatment with STT. Treatment of the mice with STT inhibited the BLM-induced increase in α-SMA and Col I protein expression in pulmonary tissues. The BLM-induced increase in TGF-β1 protein expression in pulmonary tissues of the mice was inhibited on treatment with STT. Treatment with STT effectively promoted the AMPK activation in lung tissues of the BLM administered mice. In summary, the present study demonstrates that STT treatment prevents TGF-β1 induced up-regulation of α-SMA, collagen I, LOXL2 protein expression and targets phosphorylation of Smad2/3 proteins in PLFs. Moreover, it inhibits TGF-β1-induced increase in expression of NOX4 and reverses TGF-β1-mediated suppression in expression of p-AMPK protein. Therefore, STT inhibits fibrosis development in vitro as well as in vivo and therefore can be investigated further as a therapeutic agent for the treatment of lung fibrosis.</p>\",\"PeriodicalId\":529,\"journal\":{\"name\":\"Doklady Biochemistry and Biophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1134/S1607672924600350\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1134/S1607672924600350","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究在体外原代肺成纤维细胞和体内小鼠模型中研究了 3,3'-二甲氧基-4,4'-二羟基二苯乙烯三唑(STT)对肺纤维化发展的影响。结果表明,STT 能有效抑制 TGF-β1 诱导的 PLF 中 α-SMA 和胶原 I 蛋白表达的增加。STT 处理可有效逆转 TGF-β1 诱导的 LOXL2 蛋白表达和 Smad2/3 蛋白磷酸化的增加。用 STT 处理 PLF 可逆转 TGF-β1 诱导的 NOX4 表达增加和 p-AMPK 蛋白的抑制。在肺纤维化小鼠模型中,STT 治疗可明显抑制 BLM 介导的体重和存活率下降。STT 还能有效抑制 BLM 引起的小鼠肺指数升高。STT 可抑制 BLM 诱导的肺组织中 α-SMA 和 Col I 蛋白表达的增加。STT 可抑制 BLM 诱导的小鼠肺组织中 TGF-β1 蛋白表达的增加。STT 能有效促进 BLM 给药小鼠肺组织中 AMPK 的活化。综上所述,本研究表明,STT 治疗可防止 TGF-β1 诱导的 PLF 中 α-SMA、胶原 I、LOXL2 蛋白表达的上调,并靶向 Smad2/3 蛋白的磷酸化。此外,它还能抑制 TGF-β1 诱导的 NOX4 表达增加,并逆转 TGF-β1 介导的 p-AMPK 蛋白表达抑制。因此,STT 可抑制肺纤维化在体外和体内的发展,因此可作为治疗肺纤维化的一种治疗剂进行进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preventive Effect of 3,3'-dimethoxy-4,4'-dihydroxy-stilbene Triazole on Pulmonary Fibrosis through Inhibition of Inflammation and Down-regulation of TGF-b Signaling Pathway.

In the present study effect of 3,3'-dimethoxy-4,4'-dihydroxy-stilbene triazole (STT) on plmonary fibrosis development was investigated in vitro in primary lung fibroblasts as well as in vivo in mice model. The results demonstrated that STT treatment effectively inhibited the TGF-β1 induced increase in expression of α-SMA and collagen I proteins in PLFs. STT treatment effectively reversed the TGF-β1 induced increase in expression of LOXL2 protein and phosphorylation of Smad2/3 proteins. Treatment of PLFs with STT reversed the TGF-β1-induced increase in expression of NOX4 and suppression of p-AMPK protein. In mice model of pulmonary fibrosis STT treatment significantly inhibited the BLM-mediated decrease in body weight and survival rate. The BLM induced increase in pulmonary index in mice was also effectively inhibited on treatment with STT. Treatment of the mice with STT inhibited the BLM-induced increase in α-SMA and Col I protein expression in pulmonary tissues. The BLM-induced increase in TGF-β1 protein expression in pulmonary tissues of the mice was inhibited on treatment with STT. Treatment with STT effectively promoted the AMPK activation in lung tissues of the BLM administered mice. In summary, the present study demonstrates that STT treatment prevents TGF-β1 induced up-regulation of α-SMA, collagen I, LOXL2 protein expression and targets phosphorylation of Smad2/3 proteins in PLFs. Moreover, it inhibits TGF-β1-induced increase in expression of NOX4 and reverses TGF-β1-mediated suppression in expression of p-AMPK protein. Therefore, STT inhibits fibrosis development in vitro as well as in vivo and therefore can be investigated further as a therapeutic agent for the treatment of lung fibrosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Doklady Biochemistry and Biophysics
Doklady Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
1.60
自引率
12.50%
发文量
68
审稿时长
6-12 weeks
期刊介绍: Doklady Biochemistry and Biophysics is a journal consisting of English translations of articles published in Russian in biochemistry and biophysics sections of the Russian-language journal Doklady Akademii Nauk. The journal''s goal is to publish the most significant new research in biochemistry and biophysics carried out in Russia today or in collaboration with Russian authors. The journal accepts only articles in the Russian language that are submitted or recommended by acting Russian or foreign members of the Russian Academy of Sciences. The journal does not accept direct submissions in English.
期刊最新文献
Development of a Panel of Biomarkers for Differential Diagnosis of Multiple Sclerosis. Transriptome Analysis of Peripheral Blood Monocytes in Chronic Obstructive Pulmonary Disease Patients. A Study of the Comparability of the Pharmacodynamic, Toxicological, and Pharmacokinetic Properties of the Reference Drug Pulmozyme® and the Biosimilar Drug Tigerase®. Effect of Bioplastic Material on Adhesion, Growth, and Proliferative Activity of Human Fibroblasts When Incubated in Solutions Mimic the Acidity of Wound an Acute and Chronic Inflammation. Effects of Overexpression of Specific Subunits SAYP, BAP170 of the Chromatin Remodeling Complex in Drosophila Melanogaster.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1